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Introduction 

  In the design, development and creation of complex objects the knowledge 

about the quantitative and qualitative characteristics of the considered objects is 

required. It is often impossible to carry out a practical test of certain laws inherent 

in complex objects for a number of reasons. In addition, it would require high 

material costs and time-consuming. In this regard, the study of the properties and 

laws of the considered complex objects on the basis of modeling methods is of great 

importance. 

  The purpose of teaching the discipline "Modeling and Identification of 

Control Objects" is to form the necessary students’ knowledge in the field of 

modeling control objects, which will contribute to further use of the developed 

models in the design of control systems.  

A distinctive feature of the Control Systems design process is its combination 

in time with the development and manufacture of technological units. This means 

that the only possibility of obtaining information about the properties of not yet 

created technical system is an analytical description of the processes typical for the 

elements of such a system. Specific characteristics of the studied object are the basis 

of such analytical methods. That is, analytical methods take into account the 

structure and all physical and chemical features of the processes occurring in the 

Control Objects. 

In many cases, the model adopted in the design differs significantly from the 

real object; it considerably reduces the effectiveness of the developed control 

system. In this context in control theory one of the approaches appeared, is 

associated with the model creation based on the observations of object’s input and 

output variables. This approach is known as system identification. In this approach 

its own principles and methods are developed. 

Knowledge of the material of the discipline "Modeling and identification of 

Control Objects" for future specialists in automation, whose activities are related to 

the design, modernization and maintenance of automatic control systems, in our 

opinion is mandatory. 

The working program of the discipline "Modeling and Identification of 

Control Objects" includes a large amount of theoretical and practical material. 

Limited classroom hours do not allow to provide students with comprehensive 

necessary information, so most of the material is studied in the framework of 

independent work. 

The proposed Abstracts of Lectures are drawn up in accordance with the 

working program of the discipline and contain 15 themes.  

The publication is only a brief summary of lectures and may not contain all 

the necessary information. Other sources should be used for successful and 

comprehensive mastering of the material. 
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1 Lecture №1. The concept of Control Object modeling. The types of 

modeling 

 

The content of the lecture: main definitions of Control Object modeling.  

The goal of the lecture: to learn the main definitions and types of Control 

Objects models.  

 

1.1 The place of models in the structure of Control System 

Control objects are complex objects. For automation system design it is 

necessary to know the control object's properties, that is its static and dynamic 

characteristics and disturbances that influence on the specified mode.  Modeling 

methods are the most convenient description methods of the Control Object's 

properties.  

Model is some object, material or virtual, certain properties of which fully or 

partially match the properties of the origin, i.e. a simplified system that reflects the 

individual, limited in the right direction, characteristics of the studied process. 

The substitution of one object by another one with the aim of obtaining 

information about the important properties of the original object using the object 

models is called modeling.  

In the automatic Control Theory the Control Object is a device, machine or 

process, state and behavior which is characterized by certain physical quantities. 

These values can be measured, that is, it is in principle measurable, direct or 

indirect. In the general case, the object can be described by some physical quantities 

that cannot be measured. The Control Object is able to accept external impacts and 

respond to them by changing the output values. Description of the Control Object is 

the expression of relationships between the object response, as a function of time 

and the input signals. Technological objects as usually have multiple input and 

multiple output variables, which, depending on control objectives, can be 

controlling, controlled or disturbing.  

Object control means fulfilling of commands, implementation of which 

ensures a change of object state according to pre-specified requirements and 

constraints. Any control system in the simple form consists of two main elements: 

the controlled object (in which you want to control the process) and the controller 

(carrying out the control functions of this process).  

The simplified structural scheme is presented in figure.1.1. Controller C gets 

the information about the control goal - x(t) signal which changes in time t and 

forms the control influence m(t) on the control object CO by a way that the 

controlled value y(t) changes in accordance with the change of x(t); thus the control 

goal  y(t)=x(t) could be achieved. In the schema l(t) are the disturbing influences, 

which  can be any in the number (including the non-controlled ones).  

Such a control system can function in reality if only there is one meaningful 

accordance between the change y(t) and the caused change m(t). This accordance is 

reflected in the mathematical model of the object that is supposed to be known 
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beforehand and can be used for the determination of the controller’s functioning 

algorithm (control algorithm). The mathematical description of the object must be 

known for any moment of time in high accuracy. It means that it is necessary to 

have the main dependencies expressed in the way of equations, which are inherent 

to this object and which characterize the static and dynamical connections between 

its incoming and outcoming values.   

     
  Figure 1.1 – The structural scheme of Control System  

 

The practical meaning of modeling is: 

- models are more convenient for the study than the original objects. Besides 

some objects can be studied only at the models; 

- modeling allows to identify more valuable factors of the studied object or a 

phenomenon, that’s why it is an instrument for more deep studying of reality. 

   Not a single model can be exhaustively complete. It is always limited and 

must be consistent with the purposes of modeling, reflecting as much source object 

properties and in such fullness as needed for a particular study. However, the 

resulting model should reflect the laws acting in the real object with the precision 

determined by the requirements of the control problem. The control quality depends 

on it.      

 

1.2 Types of modeling 

Model is the material or mentally imagined object that replaces the real object 

in the process of study; and at the same time it preserves some typical features 

which are important for this research. The method of research that is based on the 

developing and using of models are called modeling. 

The models can be divided into two groups: material and ideal, and, 

respectively, there can be distinguished subject and abstract modeling.  

 The main types of the subject modeling are the physical modeling and 

analog modeling.  

The first group includes such methods in which research is conducted on the 

basis of a model that reproduces the basic geometric, physical, dynamic and 

functional characteristics of the original. The main types of subject modeling are 

physical and analog modeling. Physical modeling is the modeling, when the real 

object is replaced by the enlarged or reduced copy, allowing studying with the 

subsequent transfer of the processes and phenomena properties from the model to 

the original on the basis of similarity theory.  

К CO 

y(t) m(t) x(t) 

L(t) 
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This method of modeling is widely used in the technique when designing of 

different kinds of technical systems. For example, a study of aircraft based 

experiments in the wind tunnel.  

The disadvantage of physical models is that when you change the parameters 

of the process or when creating a new object, you must create a new model, that is 

typically associated with high costs of time and money. Besides the complex objects 

models cost is relatively high. That is, these models are not universal. 

The analog simulation is based on replacing the original object by the object 

of another physical nature but with similar behavior. For example, vibration and 

resonance can be studied with the help of mechanical systems, or using electrical 

circuits. At analog modeling it is important to see the needed features in the 

substitute object and interpret them correctly.  

In both types of the material modeling the model is the material reflection of 

the initial object and is connected to it by its characteristics; the process of 

researching consists in the subject experiment. 

The ideal modeling differs from subject modeling principally and is based at 

the ideal, mental analogue. It is theoretical in nature. 

There are two types of ideal modeling: intuitive and symbolic modeling. 

Intuitive modeling is modeling based on the intuitive idea about the object 

under study which either can not be formalized or does not need it. That is, the 

model is not formed, and instead, some not definitely fixed mental representation of 

the real fact, serves as a basis for reasoning and decision making. Thus, any 

argument that does not use the formal model can be considered as intuitive 

modeling when the thinking individual has some idea about the object of study that 

can be interpreted as the model of the reality.  

The symbolic simulation is the modeling that uses signs and symbols as the 

model: schemas, graphics, drawings, texts in different languages including formal, 

mathematical formulas and theories. The obligatory participant of the symbolic 

modeling is the interpreter of the symbolic model (mainly a person). Drawings, 

texts and formulas themselves have no meaning, they have the meaning when the 

individual understands them and uses them in everyday activity. 

The most important type of symbolic modeling is the mathematical modeling, 

when the object studying is fulfilled by means of the model formed in the language 

of mathematics with use of specific mathematical methods. By abstracting from the 

physical nature of the object, the mathematics studies the ideal objects. 

Mathematical modeling is based on the limited number of fundamental laws of 

nature and principle of similarity which means that the phenomena of diverse 

physical nature can be described by similar mathematical dependences. 

Mathematical modeling is the formalized system description using 

mathematical relations and algorithms. Any mathematical expression which consists 

of physical quantities can be used as a mathematical model of the process. 

Unlike physical modeling mathematical model allows to study only the 

parameters of the original which have a mathematical description and linked by 
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mathematical relations in the equations that are related either to the mathematical 

model or to the original. Meanwhile the physics of the studied process is not kept. 

The modeling here is based on the ability of the same equations to describe different 

phenomena and to identify the different functional connections of the individual 

aspects of the object behavior without a full description of its behavior. 

The advantages of the mathematical model: 

a) ability to quickly fulfill a series of experiments on the mathematical model 

with  the purpose of finding an optimal technological mode or maximally valid 

forecast at the minimal costs of time and material resources; 

b) ability of the model to specify the operating conditions, impossible in 

reality, to verify the optimal modes; 

c) a mathematical model using the developed techniques allows you to 

quickly find the optimal modes of the technological process.  

The transfer of the results obtained in the process of creation and study of 

models to the original is based on the fact that the model, in a certain sense, 

reproduces some features of the object which are of interest to the researcher.   

The most important kind of the mathematical modeling is the computer 

simulation. A computer model is a software implementation of the mathematical 

model, complemented by various utilities. This is just another form of abstract 

models, which, however, can be interpreted not only by mathematicians and 

programmers, but the technical device – processor.  

This special kind of models, combining abstract and physical traits, has a 

unique set of useful properties. Therefore, in the present, under simulation is always 

understood computer modeling. 

 

2 Lecture №2. Mathematical modeling. Classification of the models 

 

The content of the lecture: main terms in mathematical modeling of Control 

Objects; classification of objects and models. 

The goal of the lecture: to learn main classes of models of Control Objects 

 

2.1 Main terms in mathematical modeling of Control Objects 

A mathematical model is an orderly combination of such parts as: 

components, variables, parameters, operators (or functional dependencies), 

constraints.   

The components of the model are its composite parts forming a system when 

they are united according to certain rules. The components can be indivisible 

structures ("elements" of the model) or composite parts which are the "subsystems". 

Typically inputs and outputs of the system are called variables; the other 

values are called parameters. These assumptions are conditional. It is impossible to 

answer without additional agreements where there are the variables and where there 

are the parameters. As an example of such an agreement, the class of functions may 

be accepted. 
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The variables of two types are usually differentiated: the exogenous (input) 

and endogenous (output) ones. The inputs of the system are generated outside the 

system under study and are the results of external reasons. The outputs appear in the 

system as a result of exogenous variables influence. Dividing of variables into 

output variables and input variables is also not absolute. This applies to a specific 

system. It is necessary to keep in mind the specific characteristic of the whole 

studied system. 

The main components of the model are the operators or functional 

dependencies. Usually they describe a relation between the time variation of the 

output variable y(t), with a corresponding change of the input variable x(t) or 

between variables and  parameters (p) which depend on them.  

A set of actions to be applied to the given input function x(t) to determine the 

appropriate output function  y(t) is called the  operator of the system. Symbolically 

the accordance between input function variable x(t) and output function y(t) is 

written in the following way    

)}({)( txAty = , 

where А is the object operator. 

There are different ways to define the object operator.  

The last components of the models are the constraints.   In the simplest case, 

the constraints include the range of variation of the vector of arguments of the 

model: xDx . The model parameters can also be set at a certain permitted set pDp  

Most often it is considered that the modeling system has no effect on the 

environment. The question of the admissibility of neglecting the external 

environment needs to be justified. 

Creating universal model that will meet various aspects of its application is 

practically impossible. The construction of the model begins with the definition of 

the class to which the object belongs. 

On the basis of the temporal and spatial characteristics all variety of the 

Control Objects can be divided into the following classes: deterministic and 

stochastic; stationary and non-stationary; static and dynamic; linear and nonlinear; 

objects, whose variables vary in space and objects without the spatial variation of 

the variables.  

As mathematical models are a reflection of the corresponding objects, the 

same classes are typical for them.  
 

2.2 Classification of the models 

Depending on the nature of the studied processes in the system, all models 

can be divided into the following classes. 

Deterministic models reflect the deterministic processes, i.e. the processes in 

which the absence of any random influences is assumed. 

Stochastic models represent the probabilistic processes and events, i.e., 

variables of the model are time-varying random processes. These processes can be 
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stationary and non-stationary. In non-stationary case, the probabilistic 

characteristics of the process are a function of time. 

Stationary and non-stationary models. The models are called stationary if the 

operator of the model and its parameters do not change over time. 

If the model parameters change over time, the model should be called the non 

stationary parametrically. The operator of the model can be dependable on time.  

The model operator may also be time-varying. This is the most common type 

of non-stationarity. Both stationary and non-stationary systems can be linear and 

nonlinear.  

Stationary models are described by the differential equations with the 

constant coefficients. The coefficients of the differential equations of non- 

stationary models are the functions of time. 

Static and dynamic models. The basis for such separation of types of models 

are the features of the motion of the studied object as a material system.  

Speaking about the models from the control point of view, it should be noted 

that the concept of space, usually understood in a geometric sense and related to 

mechanical systems, it becomes narrow for a wide class of technological processes. 

Moreover, for many of the control objects it is important not just mutual movement 

of the elements, but change of their internal state. Therefore, unlike geometric, we 

consider the state space of the object and its model. Then the "position" of the 

object or a prediction of this "position" by the model is estimated using state 

coordinate y related to output variables. Elements of the vector y are usually 

controlled technological parameters (flow, pressure, temperature, humidity, 

viscosity, etc. 

The composition of the vector y elements for the object itself may be wider 

than for the model of this object, as the modeling requires the study of only part of 

the real system properties. Therefore, speaking about the vector y(t), we will relate 

it to the model, and it is served for predicting the behavior of the object. Thus, 

movement of the control object in the state space and in time is estimated with the 

vector process y(t).  

The model of the system is called static if the state of the system does not 

change, i.e. the system is in equilibrium, but the movement is related to the static 

state of the object which is in equilibrium.  

Mathematical description of static models does not include time as a variable 

and consists of algebraic or differential equations (in the case of objects with 

distributed variables). Static models are usually nonlinear. They accurately reflect 

the state of equilibrium caused by the object transition from one mode to another.  

The dynamic model reflects the changing object state in time. The 

mathematical description of such models necessarily includes a derivative in time. 

Dynamic models use differential equations. Exact solutions of these equations are 

known only for some class of differential equations. More often it is necessary to 

use the numerical methods which are approximate.  
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For control purposes, the dynamic model is represented by the transfer 

function.  

Linear and nonlinear models. The model is called non linear, if there are the 

non linear operations in the model operator expression, in other case it is called 

linear. 

The interest to linear models primarily is explained by the fact that their 

behavior is described by linear differentiated equation for which the general and 

relatively simple solution methods are worked out. Besides, the following two 

properties of these models are important: 

1) input influences of real objects can be presented in the way of weighted 

sum of respectively selected typical elementary influences of the same form. That is 

why in order to calculate the linear object response on any input influence it is 

necessary to have the response of this object on these typical influences.  

 In other words, the behavior of linear object at arbitrary input influences can 

be described not only with the help of differential equations but also with the help 

of characteristics that determines its response for typical influence (this response is 

called the dynamic characteristics).  

 The advantages of the systems mathematical description with the help of the 

dynamic characteristics becomes especially notable at the creation of the 

mathematical models of complex objects, derivation of differential equations of 

which is usually a very difficult problem. At the same time the dynamic 

characteristics can be received by fulfilling of relatively simple experiments on the 

object;  

2) in a linear stochastic system that is under the influence of random non- 

controlled disturbances, the effect of these disturbances influence on the output 

variable can be taken into account in the form of additive random noise imposed 

directly on the deterministic component of the output variable.  

Accordingly, the description of the object behavior in this case can be 

obtained through the ordinary apparatus of linear differential equations (or adequate 

apparatus of dynamic characteristics). Of course, in this case, it is necessary to have 

additional information about the probabilistic characteristics of random noise.  

If the disturbance is accessible for inspection, then to obtain the oscillogram 

of the disturbance changing, it is sufficient to register the object output with zero 

input effects.  

In other case it is often assumed that random disturbance has normal 

Gaussian distribution. The theoretical reason of the role of the normal probability is 

the central theorem (in probability theory). 

It is not always possible to describe the behavior of the object by linear 

equation. That is why the approximation of non linear dependencies by linear 

expressions in the specific range of the arguments is used. The procedure for 

replacing the real functional dependence of the output variable from the input 

variable by approximate linear dependence is called the linearization. Linearization 

is usually fulfilled by decomposing nonlinearities in a Taylor series. 
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The models with concentrated (lumped) and distributed variables. If it is 

possible to neglect the object state coordinates spatial changing, the model is the 

object with concentrated variables.  

If the basic variables of the object change both in time and in space (or just  

in space), the object model is a model with distributed variables. 

In the object with the concentrated parameters in the steady state the 

controlled variable have the same values throughout the volume of the object. In the 

transition mode in any point of the object the character of the controlled values 

changing is the same at the same time. Such models are described by the ordinary 

differentiated equations.  

In the objects with distributed variables control value varies at different 

points of the object (pressure of the substance during transport in the pipeline, the 

product temperature in heat exchangers along its length, etc.). These objects are 

described by differential equations in partial derivatives or ordinary differential 

equations in the case of stationary processes with one spatial coordinate.  

The continuous and discrete in time models. Models describing the state of 

the objects with respect to time as a continuous argument are called continuous (in 

time). The variables of the continuous model can take arbitrary meanings at any 

point of time in a given changing range. 

Discrete models are used to describe processes that are assumed to be 

discrete. In such models the variables are quantized by level and by time. 

Quantization by level corresponds to fixing discrete levels of variables at arbitrary 

points in time; the quantization by time corresponds to fixing discrete time points at 

which levels of the model variables can take arbitrary values. For dynamic control 

objects quantization in time is more commonly used. 

Discrete-continuous models are used for the cases when the object has both 

discrete and continuous processes 

The full name of the model may include a combination of the listed 

characteristics. 

 

 3 Lecture №3. Main operators of Control Objects models 

 

The content of the lecture: main stages of the modeling process; operators 

of Control Objects models. 

The goal of the lecture: to learn the main stages of modeling and the 

operators of Control Objects models. 

 

3.1 The stages of modeling 

  In general case the process of modeling consists of the following stages: 

1) The description of the modeling object.  

At this modeling stage the system and its components are determined. For 

this purpose we study the structure of phenomena that constitute the actual process. 

In the result of this studying meaningful description of the process appears, in 
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which it is required, where possible, to clearly represent all the necessary 

dependencies.  

From this description the formulation of the applied problems follows. The 

problem statement defines the objectives of the simulation, the list of desired 

quantities, and the required accuracy. And the statement may not have a strict 

mathematical formulation. 

A meaningful description is the basis for creating a formalized schema that is 

intermediate between meaningful description and mathematical model. It is not 

always developed, and when direct transition from meaningful description to a 

mathematical model is impossible due to the complexity of the studied process. The 

information presentation can be also verbal, but there needs to be a precise 

mathematical formulation of the studying problem, the process characteristics, 

system parameters, dependencies between characteristics and parameters. 

2)  The model selection. At this stage the equations of a mathematical model 

are formed and necessary assumptions are raised.  

Transformation of the formalized scheme into a mathematical model is 

carried out by mathematical methods without the inflow of additional information. 

At this stage all relationships are written in an analytical form, logical restrictions in 

the form of inequalities, the analytical form is given to all information.  

 When constructing the mathematical description the equations of different 

types are used: algebraic (stationary mode), ordinary differential equations 

(dynamic objects), and differential equations in partial derivatives are used for the 

mathematical description of the distributed objects dynamics. If the process has 

both deterministic and stochastic properties, we use the integral-differential 

equations.  

3) The analysis of the model. The model equations are solved for the desired 

output variables. All actions are performed on the model and aimed directly to get 

information about this object for defining its development laws. An important 

advantage of modeling is having the opportunity to repeat many of the phenomena 

for different initial conditions and different character of their changes in time. 

4) The results interpretation. At this stage, the question about transferring the 

obtained in the mathematical model values on the real object under study is 

considered. The researcher is interested in the qualities of the object that was 

replaced by the model. The possibility of the transferring such knowledge exists due 

to the presence of certain accordance and relationships between the model and the 

original process. These relationships are defined during the modeling process. 

If necessary, a repeated systems analysis or synthesis is done. 

The success of application of the mathematical modeling depends on the 

following: how successfully was the model built, the adequacy, the degree of 

studying the model, the conveniences of operating it. 

Application of computers in mathematical modeling gives the opportunity to 

investigate, at any conditions, variation parameters and external factors indicators, 

including those not being implemented in natural experiments. So, the researcher 
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has the opportunity of obtaining answers to many questions arising at the stage of 

development and design of objects without using other, more complex methods.  

 

3.2 Main operators of Control Objects models 

The Control Object is able to accept external influences and respond to them 

by changing values of output variables. In Control Theory object description is 

expression of the relationship between object response, as a function of time, and 

input effects. As previously mentioned, this relationship in the general case can be 

represented by the following operator: 

)}({)( txAty = . 

There are various ways of the Control Object model operator determination.   

  The most general form of operator representation is its determination by the 

differential equations system describing the object behavior. We consider only 

objects with lumped parameters, which are described by ordinary differential 

equations.  

The order of the differential equations system describing the object model is 

not directly determined by the number of inputs and outputs, and depends on the 

operators that transform the input signals into the output signals. 

The most universal model based on differential equations is described by the 

expression: 
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y ==  - the derivatives of  output and input signals, respectively. 

  In order to describe the dynamics of the objects that are characterized by 

discrete values of input and output signals, i.e. which functioning is presented for 

the discrete time tk=kT (in this case T is the sampling interval), instead of 

differential equations the difference equation can be used. Denoting the discrete 

values of input and output signals, respectively:    

     ),(),( jkyyjkxx jkjk −=−= −−  

we write the difference equation (the analogue of differential equation) as 

12312111 ...... +−−−−− ++++=+++ lklkkkpkpkк xbxbxbxbyayay . 

In the analysis of stochastic systems encountered in various fields of science 

and technology, the source data for the analysis are the realization of a random 

process generated by this system. Obtained in the form of graphs or oscillograms, 

realizations of a random process are processed and presented in the time series. 

Time series contains the ordinates of the realization of a random process taken at 
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discrete and equally spaced points in time. Consequently, we make conclusion 

about the properties of the original continuous system by the results of digital 

processing signals (time series) generated by the system. As a result, digital 

parametric stochastic models of auto-regression and moving average are widely 

spread. These models are quite simple and typically include a small number of 

parameters that need to be evaluated by observations. They can be used to study 

time series and determining the statistical characteristics of these series.  

Below are a few common discrete object models for the time domain, taking 

into account the effect of noise observations (discrete time moments marked by the 

same symbol t, and continuous time, t = 0, 1, 2...). 

The easiest description is considered the autoregressive model (AR-model): 

          A(z) y(t) = e(t), 

where 

        A(z) = 1 + a1z-1+ a2z-2 +...+ anaz-na 

and the operator z-1 = e-pT is a delay operator. 

  Here and below e(t) is discrete white noise (magnitude of error e(k) reflects 

the presence of measurement error and imprecision of model parameters estimates). 

More complex – ARX-model (AutoRegressive with eXternal input) 

      A(z) y(t) = B(z) u(t) + e(t)  

or in expanded form: 

 y(t) + a1y(t-1) +...+ anay(t-n) = b1u(t) + b2u(t-1) +...+ bnbu(t-m) + e(t), 

where 

                       B(z) =b1+ b2z-1 +...+ bnbz-nb+1. 

  ARMAX-model has the form: 

      A(z) y(t) = B(z) u(t - nk) + C(z) e(t)  

 where nk is delay,  

              C(z) = 1 +c1z-1+ c2z-2 +...+ bncz-nc. 

All these equations are linear difference equations of the control object.  

More fully the Control Object is described in terms of state space. The object 

state is a set of variables yi, fully defining its position at this point in time. State 

variables (phase coordinates) form the vector of state variables, control and 

disturbance vectors form the control and the disturbance vectors. Many of these 

vectors constitute the state space (phase space), the space of controls and 

disturbances.  

It should be noted that between the input, output and state vectors there is a 

fundamental difference. If all components of input and output vectors are specific 

physical quantities, the elements of the state vector can be some abstract variables, 

the physical nature of which is not always defined. As state variables of the object, 

usually chosen n coordinates (output signal y(t) and its n-1 derivatives).  
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For the linear system we can write the equation (3.1) in the form of a 

differential equations system. By entering the designation: 

,...,,,, )1()2(

3

)1(

21

−==== k

k yyyyyyyy  

after some transformations we have vector form of the model operator (3.1):  

   ),()(
)(

tXBtYA
dt

tdY '+=  

where 

Y = (y1,…, yp) –the state vector,  

X’=(x, x(1), …, x(l)) – the disturbances vector,  

A – square matrix of coefficients,  

B – rectangular matrix of coefficients.   

          This system presents the equations for the state variables where n coordinates 

are selected as the variable of object state (output signal y(t) and n-1 its derivatives).  

So, the differential, difference and state space equations are the main (initial) 

operators of control objects’ models in time domain. 

Applying the Laplace transform to linear differential equations with zero 

initial conditions, we receive the transfer functions of the object. The transfer 

function for linear and linearized systems is another form of their mathematical 

models representation (in frequency domain). 

There are the dynamic characteristics for control objects.   

The transition (response on a step signal) and impulse response (response on 

the impulse signal) functions are the object dynamic characteristics. Knowing these 

functions, it is possible to obtain the transfer function of the object (we will consider 

such methods later). The dynamic characteristics of the control object can also be 

identified using the frequency response (amplitude and phase characteristics).  

In contrast to methods based on solution of differential equations, the step 

response, impulse response and frequency response methods are not only 

calculated, but experimental. Between these dynamic characteristics of linear or 

linearized control object there is a definite relationships, so there is made no 

difference between them. And, as we said, they can be used to obtain object’s 

transfer function and, therefore, the model equation (in differential equations or 

some others). Therefore, for control objects the dynamic characteristics can be also 

considered as object models. 

    
3.3 Linearization of equations 

The final goal of modeling the processes dynamics is the use of models in 

control systems for determining the dynamic characteristics, therefore, in any way, 

it is necessary to find a solution to the equations. That is why the differential and 

difference equations that form the mathematical model of the control object are 

derived based on various simplifying assumptions. Linear differential equations are 

solved relatively easily. However, it is not always possible to describe the behavior 
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of an object by a linear equation. That is why the approximation of nonlinear 

relations in a given range of arguments of linear equations is used. In other words, 

in a given range of input arguments the nonlinear equations are replaced by linear, 

they are linearized. In the linear model input and output signals are easily described 

using the transfer functions. This idealization significantly simplifies the process of 

modeling. For example, linearization of differential and difference equations leads 

to linear dynamic models, the mathematical apparatus of which is most fully 

developed. As a result of solutions of these equations the characteristics of the 

transition process, which depends on time and parameters of the object are received. 

Nonlinear elements can often be linearized in assuming that signals 

deviations from their stationary mode are small values. 

Let some element be characterized by input )(),...,(),( 21 txtxtx m , output y(t) 

values and the external action f(t). The dynamic equation of the element can be 

written in common view: 

 ),...,,(),...,,,...,,,...,...,,,,...,,( )(')(')()(
2

)(
1

''
2

'
121

lnl
m

ll
mm fffyyyxxxxxxxxxF = .     (3.2) 

Suppose that the steady state is the following:  

.,,,...,, 00
00

22
0
11 ffyyxxxxxx nn =====  

Then the steady state equation according to (3.21) will be 

                          ).0,...,0,()0,...,0,,0...,0,0,,...,,( '0000

21
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m
=                          (3.3) 

          The basis of linearization of the nonlinear equations is the assumption that in 

the investigated dynamic process variables )(),(),...,(),( 21 tytxtxtx m  are changed so that 

their deviations from the steady state values ),,...,,( 0

000

21
yxxx

m
 are sufficiently small. 

Let us denote these deviations through  ,...,,,...,,,...,, '''

21 1
yyxxxxx mm    

Then in a dynamic process we have: 
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The condition of sufficient smallness of dynamic variables deviations from 

some steady state values for the automatic control system is usually performed. This is 

required by the idea of a closed-loop automatic system.  

External influence f(t) does not depend on the automatic system operation, its 

change can be arbitrary, and thus the right side of equation (3.2) is not usually 

linearized (though in some cases it can be also linearized). 

The linearization is usually carried out by decomposing non-linear 

dependencies in a Taylor series in a neighborhood of the initial stationary mode with 

saving only the linear parts of the decomposition and subsequent subtraction of the 

static equations. Using this procedure, the model equations are obtained not with 

respect to its variables, but with respect to deviations of variables from the initial 

steady state. 
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The obtained differential equation like equation (3.21) describes the same 

dynamic process. The difference of this equation from the original: 

- unknown time functions in linearized equation are not the same value 

),(),(),...,(),( 21 tytxtxtx m  and their deviations yxxx m  ,,...,, 21  from some steady state 

values ),,...,,( 0

000

21
yxxx

m
; 

- the resulting equation is linear with respect to deviations of variables 

 ,...;,,,...,,,...,, '''

21 1
yyxxxxx mm   

- this equation is more approximate, because in the linerazing process 

the higher order members has been discarded. 
  Such an equation is called a differential equation in deviations.  

  We must always remember that a linear model of an object obtained by the 

linearization procedure is valid only for small deviations from the initial steady 

state. 
 

4 Lecture №4. General principles of modeling of control objects  

 

The contents of the lecture: two approaches to the construction of control 

objects models; main equations of the processes dynamics. 

The goal of the lecture: to learn main laws used in the analytical method of 

the control objects modeling.   

 

4.1 Two approaches to modeling of control objects. 

Control Systems life cycle includes several periods, such as design, 

exploitation and modernization. A distinctive feature of Control Systems design 

process is its combination in time with the development and manufacture of 

technological units. This means that the only possibility of obtaining information 

about the properties of a technical system (which is not yet created) is an analytical 

description of the processes typical for elements of such a system. The involvement 

of theoretical propositions of physics (and sometimes chemistry) in the application 

to the specific characteristics of the studied object is the basis of such analytical 

methods.  

The process of exploitation of the control system imposes its own conditions 

on the mathematical models. They are needed to get current (operational) 

information:  

- about uncontrolled by measuring devices technological process coordinates; 

- about the properties of some parts of technological processes changing in 

time under the influence of various factors. 

Thus, there are two fundamentally different approaches to creating 

mathematical models of Control Objects. 

  The first approach is based on the choice of models using the main physical 

and chemical laws that determine the studied process. Such models are called 

analytical models of the process. That is, the fundamental laws of matter and energy 
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conservation are used for derivation of the model equations. The equations are 

derived on the basis of theoretical analysis of physical and chemical processes 

occurring in the object. The analytical method of derivation of the mathematical 

model which is identical (matching) with  the characteristics of the investigated 

object are applicable when the physical and chemical processes occurring in the 

object are well studied.  

An analytically derived equation of one object is applicable to describe the 

properties of other similar objects; it is the advantage of this method. 

Disadvantage of the analytical method of generating the equations is the 

difficulty of analyzing and solving equations, the large complexity of deriving 

numerical values of the mathematical description parameters. 

The second approach is based on the concept of "black box", i.e. it is 

postulated that the internal structure of the object is unknown, and should not 

interest the researcher. All information is obtained only as the result of the object 

observations in a passive or active experiment. In active methods the object under 

investigation is subjected to special external influences that cause changes in the 

output value. These changes are recorded and the obtained data are approximated by 

mathematical expressions. Passive techniques use information obtained as a result 

of normal operation of the object without special external influences on it. This 

information is processed by statistical methods. The models obtained by this way 

are called empirical (experimental).  

The advantage of experimental methods is their simplicity and low 

complexity in a sufficiently precise description of the object properties in a narrow 

range of coordinates changes.  

The main disadvantage of experimental methods is the inability to establish 

functional relationships between numerical parameters of equations and structural 

characteristics of the object, the process indicators and physical and chemical laws 

of studied processes. In addition, these models cannot be extrapolated to other 

similar objects 
 

4.2 Main equations of the dynamics 

Analytical models are cognitive models. The essential feature of these models 

is a reflection of the phenomena mechanism in the structure of the model operator, 

i.e. all causal relations to the object.  

The construction of any mathematical model starts from physical description 

of the modeling object. Here are the elementary processes occurring in the object 

modeling, which should be reflected in the model with formulation of the main 

assumptions taken in their description. "Elementary" does not mean "simple", but 

only that these processes are components of more complex processes. Usually, 

"elementary" refers to the process relating to a specific class of phenomena, e.g. 

mass transfer, heat transfer, etc. Usually the following "elementary" processes are 

taken into account: the phases flow, mass transfer between phases, heat transfer, 

phase changes, chemical reactions. 
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The list of elementary processes taken into account defines the set of 

phenomena that describe the object to include in the mathematical model. 

The main technology of the heat power industry is based on physical 

processes, whose elementary components are: 

- mechanical processes (mechanical processing of hard materials; for 

example, crushing of solid fuel); 

- hydrodynamic processes (transport of liquid and gas); 

- thermal processes (heating and cooling); 

- mass transfer processes (evaporation and condensation). 

Patterns of occurrence of all these processes are closely connected with the 

conditions of working fluid motion in which they occur and determined by the laws 

of hydro-dynamics.  

In addition, they are based (except the first one) on the elementary processes 

of matter and energy transporting between separate parts of the system. The laws of 

this transferring are studied in thermodynamics. (The studying of the mechanical 

processes is based on the laws of the theory of elasticity and solid mechanics). That 

is the general theoretical basis for modeling the most part of technological processes 

is hydro- and thermodynamics.  

The state of the system is usually expressed by means of the laws of 

thermodynamics. The first law of thermodynamics has a unique mathematical and 

physical formulation: the change in time of the substance in an elementary volume 

is equal to the sum of the inflow and outflow of the substance through its surface. 

This law formulates the indestructibility of the matter and its motion and is written 

through the set of the laws of mass, energy and momentum conservation.   

The mass conservation law. This is the basic law of classical mechanics: the 

mass of any part of material system which is in motion does not depend on time and 

is constant. 

The motion conservation law: the speed of changing the motion of any part of 

a material system which is in movement equals the sum of external force.      

The energy conservation law: when there is an infinitely small heat supply to 

an isolated system and making by this the system infinitely small work δA, the 

energy of the system changes by the amount de = δQ – δA. 

All these laws have a mathematical representation (integral and differential 

equations).  

These equations must be added by another one expressing the second law of 

thermodynamics, which describes the entropy increasing in the system in which the 

matter or energy moving occurs. They are viewed as laws of mass and energy 

transferring.  

The system of equations must be supplemented by the state equation.  

All mentioned equations completely describe the behavior of a dynamic 

system at any point in time. An important feature of the mathematical description 

that contains the ordinary differential equation is the need to specify the initial 

conditions. For partial differential equations along with the initial it is also 
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necessary to specify boundary conditions, which are functions of time in the general 

case.  

 

4.3 The simplification of dynamic equations 

The systems of dynamic equations, as a rule, are essentially nonlinear, and 

analytical solution of them in general form is impossible. That is why depending on 

the specific goals the simplifications aimed for the exception of certain relations are 

fulfilled. But the essential features of the process should be kept.  

The most simple (in terms of mathematical solution) is the static problem. 

Time and coordinates derivatives are equal to 0, and the differential equations 

system is reduced to the algebraic system (stationary modes of objects with the 

concentrated parameters).  

Next in complexity is the stationary problem. For the mathematical 

description of non-stationary modes of objects with the concentrated parameters, as 

well as stationary modes of objects with the distributed parameters for one spatial 

coordinate are typically used ordinary differential equations. In the first case, the 

independent coordinate is time, and in the second case - the spatial coordinate. 

One of the ways to simplify the system of equations is reducing the number 

of space coordinates. After reduction of the space dimensionality, the system will be 

open loop, therefore it is necessary to use algebraic dependencies, which reflect the 

real three-dimensionality of the flow.  

In many practical cases, the laws of real flow motion are found on the basis of 

experimental data. In the experimental studying some factors are identified, which 

reflect the real flow structure, that is, the distributions of velocity, temperature, 

density and other parameters. These are friction, heat transfer coefficients, the 

relative phases velocity in two-component mixtures, etc. They are all integral 

characteristics of the flow, which with a certain approximation, reflects the 

exchange of momentum, heat, matter, existing in the real flow.  

The use of empirical coefficients and the mentioned dependences allows to 

refuse from considering the real three-dimensional flow, simplify some equations, 

and others exclude entirely. Such simplification is admissible, since empirical 

relations to some extent reflect the real three-dimensionality of the flow. As a result 

of these assumptions for determining of the dynamic characteristics it is possible to 

use a one-dimensional model, and sometimes - a model with lumped parameters.  

In the models with the concentrated parameters all the system parameters do 

not depend on spatial coordinates and are only functions of time. Derivatives of the 

spatial coordinates are replaced by the ratio of the difference in function values 

between the input and output to full length of the channel. For the description of 

processes in such objects known conservation laws are usually written in the form 

of balance equations (mass, energy, motion). 
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5 Lecture №5. Analytical methods of modeling the objects with lumped 

parameters 

 

The content of the lecture: the analytical approach of Control Objects 

modeling.  

The goal of the lecture: to learn the use of general conservation laws at the 

examples.  

 

In the models with the concentrated parameters all the system parameters do 

not depend on spatial coordinates and are only functions of time. Derivatives from 

the spatial coordinates are replaced by finite difference. For describing the 

processes in such objects, the conservation laws are usually written in the form of 

balance equations (mass, energy and motion). 

According to the material balance the change of substance mass in time in a 

closed space is equal to the algebraic sum of the input and output streams: 

,
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here Di (i=1,k) is a mass rate of the i-th input stream, Dj (j=1,r) is a mass rate 

of the j-th output  stream, G is the mass of matter in the considered volume, and t is 

time. 

Similarly, in accordance to the heat balance equation, the change of enthalpy 

of a body in time equals to the algebraic sum of heat streams, that input (or output) 

the heat to the considered body: 
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where Qi (i=1,k) is the i-th input heat stream, Qj (j=1,r) is the j-th output 

stream of heat, I is the body enthalpy. 

There is no possibility to give a complete theory of modeling all kinds of 

processes in their various manifestations. To illustrate the application of the 

fundamental mass, motion, energy conservation laws to the most characteristic 

processes let us consider some examples. These examples are considered for the 

simplest cases with neglecting a number of irrelevant factors.  

 In industrial facilities there are often found tanks which, depending on 

the characteristics of the inflow, outflow and design, possess certain dynamic 

properties.   

Example 1. The studied object is a tank from which liquid flows in the 

atmosphere. In this case we have the independent input flow Gin(t) and the 

dependent output flow Gout(t).  

  The control variable is the liquid consumption Gin flowing into the tank, 

a controlled variable is the liquid level in the tank H, the external disturbance 

is liquid flow from the tank. 



22 
 

The flow at the output is determined by the liquid level H over the output 

hole and by the square of section area of output hole fc.  

The liquid amount in the tank above the output hole is determined from the 

relation: 

ρHFM = , 

 where F is the square of the tank cross sectional area; 

          ρ is the density. 

   In accordance with the material balance equation of the system 

.(t)(t) - GG
dt

dM(t)
outin=  

Then we can write the following dependence 

                                    .
)(

outin QQ
dt

tdH
F −=                                               (5.1) 

Liquid flows in the atmosphere, so to determine the output flow we use 

the equation, reflecting the motion conservation law (the law of 

hydrodynamics): 

 

 

where μ is discharge coefficient; 

            g  is free fall acceleration; 

            ρ  is density  

Considering F and ρ as constants, that is, F=F0, ρ= ρ0 and by substituting 

expression (5.2) into equation (5.1), we obtain the differential equation 

describing the object dynamic, the dynamic model: 

                                                                                                             (5.3) 

 

Consider the object behavior at equilibrium state; that is the coordinates 

of state (here H and Gout) do not change in time. It is easy to see that at the 

equilibrium state the amount of substance in the tank will not change, that is:  

 

 

 

Therefore, the equation of material balance is expressed by the relation:  

).()( tGtG outin =  

On the other hand, from a mathematical point of view the concept of 

equilibrium is expressed by the equality to zero of all derivatives of state 

coordinates: 

  And this, in turn, means that: 
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In the end, we can write 

                                                                                                              (5.4) 

  Substituting (5.4) into (5.2) we get the possibility to calculate the liquid 

level in the tank:  

 

                                                                                                              (5.5) 

 

Model (5.5) is a static model; the name is associated with a static state of 

an object in equilibrium. 

  Let’s get the linearized dynamic model, assuming that the initial 

equilibrium state of the system corresponds to the time t0. 

  To evaluate state coordinates values in the initial equilibrium state, we 

can use a static model. Then 

 

 

The main nonlinearity in the system equations is given in the expression 

(5.2). 

   Decompose it in a Taylor series, and keep only the linear members: 

 

                                                                                                              (5.6) 

 

    We introduce the following notations for the coefficients and identify 

them, differentiating (5.2): 

 

                                                                                                   . 

 

    Taking into account the initial equilibrium state, we wil l examine only 

the deviations of variables from their initial values, that is:  

 

  

 

Then  

                                                                             . 

It is the first equation of the linearized model. 

Keep in mind that: 
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substitute the linearization result (5.6) in (5.3) and get:  

 

                                                                                            . 

 

If we denote: 

 

the linearized dynamic model of the tank with the liquid can be expressed 

by the following system of equations (as it is usually written in math):  

,
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here 

                                                       

                                                       . 

  Equation coefficients ki and T are parameters of the linearized models, 

depend on the equilibrium state prior to the transition process.  

  Therefore, the model requires the reconfiguration of its parameters if 

initial conditions ( )
0

,0 cGΗ  of the simulated object change. 

   If the characteristics of the object is essentially nonlinear it is necessary 

to use a piecewise linear approximation. In this case a nonlinear object is 

described by a set of linear relations and the logical relations that define the 

validity area of each linear expression.  

Example 2. If there are two communicating tanks (figure 5.1) the object is 

described by a system of equations 
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where Q12=Q12(H1-H2) is some, generally non-linear monotonic function, 

S1, S2 are the the cross section’s areas of the tanks.  

  Equation (5.7) represents the mathematical description of the object, 

where each of the vectors of controllable variables and influences has two 

coordinates u = Qoit1, Qout2,  y = H1, H2. 

 Depending on the presence of devices which control the flows Qc1 and 

Qc2, influences vector {Qc1,Qc2} there can be controlled or uncontrolled  

disturbances.  

   Controlled coordinates H1, H2 can be adopted as the state vector of the 

object .},{ 21 yxxx ==  
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Figure 5.1 – System of two tanks  

 

    Example 3. Consider the system in the form of a cascade of two tanks 

(figure 5.2).   

 

 

 

 

 

 

 

Figure 5.2 – Tanks cascade 

 

The model is described by a system of equations:  

21
1 QQ

dt

dΜ
−= ,  

32
2 QQ

dt

dΜ
−=                                    

   In this case, together with the balance equations we have the following 

dependencies: 

;2 212113 == kgfQ                                           

( ) ( );2 21221222 −=−= kgfQ           

111 = FΜ  , .222 = FΜ                     

These equations are the equations of the cascade of tanks.  

However, it is often necessary to find the relationship between specific 

variables; in this case you must fulfill some transformation of this system. For 

example, to find the relation between the output Q3 and the input of Q1, after 

transformations we get a nonlinear second order equation. The equation order is 

determined by the number of tanks in the cascade.  

 

6 Lecture №6. Modeling of a level control object 

 

The content of the lecture: analytical approach to the modeling of control 

objects.  

H2 

Q1 

M1 

M2 

Q2 

 Q3 

H1 
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The goal of the lecture: to learn the examples of modeling of the 

technological object with lumped parameters. 

 

To obtain the final product in the textile industry raw material is subjected to 

various processing on a variety of industries. One of the technological processes is 

the process of finishing fabrics, which includes the step of dyeing by various dyes.  

One of the stages of technological process is the step of coloring the fabrics. 

The fabric moves along rollers of the coloring device and repeatedly passes through 

the coloring solution. 

As control factors we can choose: temperature control in baths of dyeing 

machines and dryer units, control of solution level and concentration, humidity, 

tension, fabric width and shrinkage, speed modes, etc. 

Disturbance factors include the large number of parameters, which 

characterize not only a specific technological operation but also the preceding 

stages of material processing. The factors are: physical and mechanical material 

properties (humidity, quality of the previous chemical treatment, the type of fiber, 

mixture and etc.), the solutions and colorants quality and stability, the material 

tension, thermal mode, etc. 

Output coordinates of the multidimensional control object are indicators of 

technological process efficiency, which are determined by its productivity, products 

quality, materials and energy costs. 

Let’s consider a bath of the coloring machine, which is one of textile industry 

apparatuses, as another example of a level control object. 

Fabric with initial dampness m1 is supplied to the tub of the machine.  

When leaving the machine, the fabric is squeezed to dampness of m2>m1. 

Otherwise, the tub will overflow.  

The G kg/sec dry cloth passes through a bath. The supporting colorant 

solution in the amount of Qin l/sec flows into the bath through the control valve. 

The fluid flow (consumption) is a function of the variables :, 21 mm   

).,,( 21 mmGfQ nconsumptio =  

Here we use the following relation: 

.
)( 12



mmG
Q nconsumptio

−
=  

In steady state the inflow of the supporting solution is equal to the 

consumption flow Qconsumption from the bath: 

,00 =− nconsumptioino QQ  

where 



)( 10200
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mmG
Q nconsumptio
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= ,                    (6.1) 
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here ρ is the density of the solution, carried out by cloth; 

the values which characterize the steady state are marked by the index “0”.  

In transient mode  

- the change of inflow to the value of ;01 nnn QQQ +=    

- or the change in consumption to a value of 
ppp QQQ += 01
  

in the bath will vary the amount of fluid and the volume of the liquid in the time dt  

will change to the amount:  

,V 0 dHSd =  

where S0 is the cross-sectional area of the bath corresponding to the 

predetermined liquid level Н0 (displacement of tissue in the bath are neglected). 

For the time :dt  

dHSdtQQ pn =− 011 )(                      (6.2) 

Divide equation (7.2) on dt and subtract from the equation (6.1), the result is: 

pn QQ
dt

dH
S −=0 .                     (6.3) 

For transition to dimensionless variables we introduce the notations: 

0H

H
=  is the relative change in the controlled variable, in this case level;  

Н0 is  nominal (or specified) value of controlled variable;  

maxn

n

Q

Q
=  is the relative change in the inflow (regulated influence); 

        maxn

p

Q

Q
f


= is the relative change in flow (disturbance). 

 

When introducing these indications, the equation (6.3) will become as follow: 

f
dt

d

Q

HS

n

−= 


max

00  

or 

,f
dt

d
Ta −= 


 

where 
max

00

n

a
Q

HS
T = is  time constant of object. 

Thus, the bath as the object of solution level control has the properties of an 

integrating (astatic) unit to its input, in addition to the controlling influence µ the 

disturbing influence is applied: 
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Maximum inflow 
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After substitution maxnQ  into equation (6.4) and transformations we receive:  
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Thus, the disturbances are caused by a change in the speed of the fabric or its 

weigh, and by the changes of humidity values of incoming and outgoing fabric from 

the bath.  

With these disturbances the equation of model has the form: 

., 33221 fkfkfk
dt

d
Ta −+−= 


 

The object transfer function in relation to the controlling influence: 

 .
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The object transfer functions in relation to each of the disturbances: 
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7 Lecture №7. Modeling of heat exchange processes 

 

The content of the lecture: the use of heat balance equations in analytical 

modeling of heat exchange processes. 
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The goal of the lecture: to learn the examples of modeling of the heat 

exchange process. 

 

When we study the processes of heat transfer from one fluid to another 

through a wall, several basic stages can be distinguished: transfer of heat from the 

hot coolant to the cooler wall, the heat absorption by the wall material and its 

heating, heat distribution by volume of the wall, the heat transfer from the wall to 

the cold fluid. 

If the process of heat exchange is stationary, the temperature at each point of 

the material (heat transfer and wall) does not change in time. The use of models 

with lumped parameters (i.e., when spatial coordinates are not included in the 

mathematical description) leads to the algebraic relations between the temperatures 

in the system. If the temperature varies over time, a mathematical description is 

obtained in the form of ordinary differential equations system (the argument is 

time). 

The temperature dependence of the geometric coordinates leads to the 

mathematical description of the statics in the form of ordinary differential equations 

(if there is one spatial coordinate) or differential equations in partial derivatives. 

The independent variables are the spatial coordinates. Dynamic model in the 

presence of spatially distributed effects are described by partial differential 

equations, and one of the independent variables is time. 

As noted earlier, in many practical cases, the laws of real flow motion are 

found on the basis of experimental data. The use of these dependencies allows to 

refuse from considering the real three-dimensional flow, simplify some equations, 

and others - exclude entirely.  

Let’s consider the heat exchanger with intensive mixing, in which a liquid Q1 

with a known temperature θ1 receives. The average amount of substance in the heat 

exchanger V. From the heat exchanger the flow Q2 with a temperature θ2 flows.  

The amount of substance in the heat exchanger is constant: the heat 

exchanger is hermetically closed, that is, the consumption of the substance is 

replenished by the input flow or, if the substance is ejected by some forces, the level 

in the heat exchanger is maintained by other apparatuses.  

Since V=const, then Q1= Q2= Qavg. The substance is intensively mixed, so 

the temperature in the volume θ and the temperature of the output stream is equal to 

θ2, i.e. θ = θ2. 

We derive the equations of the heat exchanger model assuming that the input 

heat flow H1 is the model input variable,  the temperature of the output flow is the 

model output variable θ 2. The change of the input value H1 may depend on the 

change in the flow Q1, as well as on its temperature. In this regard, consider the 

following progressively more complex situations: 

a) the heat exchanger is perfectly isolated, that is, there is no heat exchange 

with the environment. 



30 
 

When liquids are mixed intensively, we can consider the object as an object 

with lumped parameters and use the following balance equation: 

= iH
dt

d
VС


  

where ρ is the material density, t/m2;  

           С is the wall material heat capacity, Мcal/(т, grad);   

          Hi  is the amount of heat supplied to the heat exchanger per unit time 

(positive value) or removed from it (negative value). 

The input stream Q1 corresponds to the supplied heat amount: 

.11 QcH =   

With Q2 flow, we lose the output heat amount: 

.22 QcH =   

Substituting H1 and H2 in the heat balance equation, we obtain:  

;··· 1122 


QQ
dt

d
V =+    

122
·c

1
·· HQ

dt

d
V =+





. 

Because θ = θ2, we get: 

   ,12
2 Hk

dt

d
T n =+ 


 

here 
cpQ

V
T =  is time constant, hour;   

( )cp

n
Qc

k


=


1
is transfer coefficient, grad·hour/Мcal; 

b) there is heat exchange with the environment by the law 

),(3 cShH  −=   

here  h is heat transfer coefficient, Мcal/(hour, m2, grad);  

         S  is the heat exchanger surface, m2; 

         θc  is the environment temperature, 0С.   

 In this case, the balance equation looks like:  

  ( ).221321 cShQcHHHH
dt

d
Vc 


 −−−=−−=  

After conversion: 
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( )cn θShΗkθ
dt

dθ
Τ +=+ 1 . 

here   
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Compared with the case of a) the time constant Тt decreased, since the value 

cpQc

Sh






 is always positive.   

If the ambient temperature is constant by moving the origin of the 

temperature coordinates to the θc point, the term )( 0 − Sh can be removed, 

otherwise θc can be considered as external action; 

c) it is necessary to take into account the thickness of the walls of the heat 

exchanger, so it is necessary to take into account the heat capacity of the heat 

exchanger walls.      

The heat flow from the volume V on the wall: 

),(1
3 MM ShH  −=  

here hм is the heat transfer coefficient from flow to the walls;  

       θм is wall temperature. 

 Heat flow from the walls to the environment: 

),( ,24  −= Mc ShH  

here hc is the heat transfer coefficient from the wall to the environment. 

Since the walls of the heat exchanger have a heat capacity, we write down 

two equations (for the flow and for the walls): 

( );221

1

331 Μθθ·ShQθ·cρΗΗΗΗ
dt

dθ
Vcρ

Μ
−−−=−−=  

( ) ( )cΜcΜΜ
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ΜΜΜ θθ·Shθθ·ShΗΗ
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3 .  

Meaning that ,, 22 срQQ ==  we express ì from the first equation and 

substitute this expression in the second equation. 

After transformations we will receive: 
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θ  is output value, H  and  θс are the input variables. 

We receive of the second order equation as there are two lumped objects: the 

heat exchanger and the walls. 

 

8 Lecture №8 Modeling of an object with distributed parameters 

 

The content of the lecture: analytical method of modeling an object with 

distributed parameters. 

The goal of the lecture: to learn the example of modeling of an object with 

distributed parameters.  

 

There are objects for which some state coordinates (process parameters) 

require orientation in geometric space. For example, the temperature of the flame at 

different points of the furnace is different. Models of such objects are the models 

with distributed parameters, and geometric coordinates z = (z1, z2, z3) must be used 

in the model operator.  

The most important heat power engineering objects with distributed 

parameters include the heat exchangers with single-phase and two-phase coolant. In 

the analytical study of the dynamic properties of distributed heat exchangers, the 

flow of the working medium is usually considered one-dimensional, that is, the 

physical parameters of the medium on the cross section of the pipe are assumed to 

be constant. The changes of kinetic and potential energy of a moving environment 

are usually also neglected, because these values are small in comparison with the 

changes in heat energy that occur during the transient processes. Therefore, the 

basic equations for the working medium, which are accepted as the initial ones in 

the analytical study of distributed heat exchangers, are greatly simplified. 

Consider an example.  A section of the pipeline with a length L and a constant 

section f is given. Along this section an incompressible flow (liquid) moves, 

characterized by a flow rate G, a pressure p and a temperature  relating to each of 

the pipeline sections. The pipeline is not isolated, i.e. the process is isothermal. 

The studied object is distributed in length (z), the working liquid parameters 

are considered to be the same in cross section (one-dimensional object). 

The basic equations: 

- substance amount conservation equation: 

 ;
t

ρ
f

z

G
0=




+




                                       (8.1) 
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- motion amount conservation equation: 

 
z

p

z

w
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;                                          (8.2) 

         - the equation of the working substance state (for ) is presented in the form:  

    ).F(p,ρ =                                                     (8.3) 

This system of three equations is the original form of the pipeline model 

representation. However, its practical solution cannot be found even for the simplest 

boundary conditions. Analytical solution of the system is possible only under 

simplifying assumptions. Such an assumption may consist in the fact that the 

pipeline is divided into a number of elementary segments, each of which is a 

lumped object.  The approximation to the real system is better if the size of the 

elements is less. The first approximation is obtained by replacing the system with 

one element and composing the equations of the lumped model. The best 

approximation is obtained by replacing the system by several elements. 

We will consider the dynamics of pressures and consumption not in every 

section (that is, not for any z), but only the relationship of the input and output 

sections (this corresponds to the initial formulation of the problem). Then, instead 

of the original pipeline scheme, it is possible to consider its equivalent, 

characterized by the selecting of the concentrated volume fLV = , as well as the 

hydraulic resistance considered to the output section: 

,0
f

L
λpp fr+=  

 where p is the total coefficient of local resistance of the pipe;  

           frλ - the friction coefficient of the working medium on the pipe wall. 

In addition, we neglect the acceleration of the flow caused by the dynamics of 

the pressure change along the length of the pipeline, i.e. we will take: 

.0=




t

w
 

Then (8.2) will take the form: 

.
z

p

z

p fr
0=




+




                          (8.4) 

Since the entire mass of the working medium is concentrated in an equivalent 

volume V, under pressure р1, instead (8.3) we accept:  

   ).,( 11  p=                                                  (8.5) 

The conservation equation (8.1) is converted with regard to the length of the 

pipeline:   



34 
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    .21
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V −=                                                                    (8.6) 

Instead of (8.2) is similar to get 
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−
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  or  .21 трppp =−                                (8.7) 

We use the known from hydraulics ratio, which determines the amount of 

friction losses:    

,2

2
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=

L

G
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fr .                               (8.8) 

Hence, we express G2  and using (8.6), we obtain the equation of the motion 

amount conservation: 

   (
frλ

Lk,ppρkG
2

)2112 =−= .                           (8.9) 

Thus, a system of three equations (8.5), (8.6), (8.9) is formed with respect to 

the six physical characteristics of the flow G1, G2, р1, р2, 1, .  

We will study the behavior of the object state coordinates G2, р1. Then the 

state equation (8.5) is used to exclude 1: 

( )( )
21

11 ,
GG

dt

pd
V −=


; 

(( )2112 ppkG −=  .                                  (8.10) 

This system is a lumped nonlinear dynamic stationary model of the pipeline. 

Let's assume that the compressed stream moves through the pipeline. The 

main assumptions adopted in the formation of the model in this case is the 

assumption that the properties of the compressible flow are close to the properties of 

the ideal gas. This gives grounds to use the well-known thermodynamics equations 

for determination of the properties of the compressible medium. In particular, for 

the isothermal process: 

).273(  += Rp  

Then in (9.6) instead of 1, we can substitute a specific expression:  

( )θR

p
ρ

+
=

273

1
1 . 
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Now we consider a linearized model obtained by applying Taylor series to 

nonlinear relations. In particular, by writing down a system of equations in variable 

increments relative to the initial state marked by an additional index "0" for 

variables, we obtain: 

( )
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1 ΔGΔG
dt
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Substituting ∆ρ1 in the first two equations, we obtain:  
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If necessary, an equivalent model formed by a set of six "input-output" 

channels can be obtained. Determination of the characteristics of each channel can 

be performed in accordance with the rules of equivalence known in the theory of 

automatic control. 

 

9 Lecture №9. Basic concepts of Identification theory 

 

The content of the lecture: general approaches to the identification problem. 

The goal of the lecture: learn basic definitions of Identification theory.  

 

9.1 Basic information on identification of control objects  

The previously discussed analytical methods use the laws of physics, 

mechanics, chemistry, etc. for description of the object. These models are the 

informative models. The essential feature of these models is a reflection of the 
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object or phenomenon mechanisms in the structure of the operator model, i.e., all 

causal relations to the object. When these relationships are not accounted, the 

cognitive aspect of the model is significantly affected, as for the cognition it is  

necessary to know not only how, but why.  

This approach gives a positive result, if the object is rather simple in structure 

and is well studied.  

Besides, functioning systems are subject to various external and internal 

disturbances, whereby their characteristics change. Therefore, it is almost 

impossible to create a sufficiently accurate mathematical model of a complex 

system only on the basis of theoretical studies of current physical processes.  In this 

regard, if the object is insufficiently studied or is so complicated that the analytical 

description of mathematical model is impossible, the experimental methods are 

used.  

Defining of the object characteristics using the results of input and output 

signals measuring is called Identification. This class of models is created with a 

single purpose – to use them to solve control problems. These models may not 

reflect the internal mechanisms of the phenomenon, which is necessary for 

cognitive models. They need only to ascertain the presence of certain formal 

relations between object inputs and outputs. The nature and characteristics of these 

relations are the basis of the model obtained in the identification process. So, 

identification studies the methods of creating the mathematical models of 

functioning systems using a priori and experimental information and is one of the 

main methods in the theory and practice of various physical natural complex control 

objects. 

In general form identification problem is the problem of defining the object 

operator that transforms input signals to output signals. Mathematically, the 

correspondence between the input and output functions can be written in the form of 

an expression 

y(t) = A{u(t)}, 

where A is the mathematical operator that is unknown beforehand and is to be 

determined; 

       y(t) is the vector of object output coordinates; 

       u(t) is the control vector (input); 

        u and y are respectively input and output vector variables of identifiable 

system which can be both deterministic and random. It is necessary keep in mind 

that the values of u and y are measured in the presence of random noise.  

All experimental methods of studying the object dynamics are based on the 

processing of information contained in its input and output coordinates. There are 

two types of such information: 

- a priori information is the information available before the observation of 

the object inputs and outputs. A priori information defines the structure of the 

identified object. For example, it is possible to identify four symptoms (although the 

structure is not limited to): dynamics, stochasticity, nonlinearity and discreteness. 
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Naturally, the opinion about the model can change after analyzing the posteriori 

information that is, after observing the behavior of the input and output of the 

object;  

- a posteriori information has a quantitative nature, i.e. it is the result of 

observations object inputs and outputs. For continuous objects there are records of 

continuous functions (measurements of inputs and outputs during the observation 

period). In the discrete case, the minutes of observation are a measurement table. 

In the identification problem it is required to estimate the unknown operator 

A. When solving this problem, it is assumed to conduct an appropriate active or 

passive experiment in order to accumulate the necessary data about the system, and 

then, using them and appropriate methods, to obtain explicitly the necessary 

information about the mathematical model of the system. 

Active identification methods are characterized by the fact that the object 

inputs are served by predetermined test signals, and the output signal is examined. 

In many cases, the disruption of the normal functioning of the object by 

artificial test signals is unacceptable. In these cases we use the passive identification 

methods, usually statistical, which are random, natural variations of the input signal. 

For effective use of these methods a large observation interval is required.  

Depending on the amount of a priori information about the system the 

following types of identification are distinguished: structural identification, 

parametric and non-parametric identification. 

The structural identification is the process of determination of the structure 

and type of the object operator, or, in other words, the type of mathematical model 

of the object. The determination of the model structure is one of the main problems 

of the identification theory. As a rule, the structure is postulated a priori with 

accuracy up to some set of unknown parameters. The decision is made on a given 

class of models-applicants. But any formal approaches and methods, allowing you 

to select the model structure based on the observable information of a plurality of 

object are absent. This is because some elements of the model are not amenable to 

mathematical interpretation.  

In the case when the operator model is given by the accuracy of parameters 

vector, we have the problem of parametric identification. It is formulated like this: 

on the basis of experimental data to specify the values of the parameters vector for 

which the model is the best (or accurate enough) approximate object operator. 

If the model operator contains unknown functions, identification in terms of 

such operators is called nonparametric. 

The specific choice of a mathematical model depends on the type of the 

object. As mathematical models of technical systems the differential equations in 

ordinary and partial derivatives are applied. Moreover, when solving the control 

problems the preference is given to the models in state space and structural models 

described by differential equations in ordinary derivatives. As previously 

mentioned, any dynamic characteristics of the control object can be used as its 

model. Let us remember the control object dynamic characteristics: differential 
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equation (differential equation derived by analytical way, differential equation 

derived from transition functions), transfer function (transfer function obtained from 

the transition function, transfer functions derived from the differential equation, 

transfer function obtained from the experimental amplitude-phase characteristics), 

amplitude-phase characteristics (obtained from the experiments, obtained using 

Fourier transform, derived from transfer functions). 

 Now consider the classification of the identification problem. Classification of 

identification methods is carried out in different ways, depending on what are the 

main features of the basis, therefore any classification is relative.  We consider the 

following classes: 

a) classification of identification methods depending on the class to which 

belongs the studied system: continuous, discrete, linear non-linear, stationary, non-

stationary. 

We can reduce the model to make it easier. So, obviously, the behavior of a 

dynamic object can be described by the static model, if the dynamics of the object is 

not too pronounced; a nonlinear object can be approximated by linear, etc. Of 

course, the effectiveness of control based on this model will decrease. But if this 

reduction is small and the gain in identification is significant, then this choice 

should be considered optimal;  

b) according to the method of the object characteristics presentation (in time 

or frequency domain): differential equations, difference equations, impulse 

response, transition function, frequency characteristics;  

c) according to the method of information processing: statistical or non-

statistical. When the object is stochastic, it is necessary to carry out series of 

experiments to obtain the average value of the indicators;  

d) according to the method of the experiment on the object: active, passive 

and mixed identification methods. 

The mathematical description should reflect regularities existing in the real 

object with the precision determined by the requirements of the control problem. 

The quality of control depends on it.  
 

9.2 The identification object  

 Any real system is an object in which different variables interact at all kinds 

of system time and space scales and that produces observable signals. A graphical 

representation of a system, suitable for the system identification problem, is 

represented in Figure 9.1a. The system variables may be scalars or vectors, 

continuous or discrete functions of time. The sensor box, which will be considered 

as a static element, is added to emphasize the need of monitoring the systems to 

produce observable signals. In what follows, the sensor is considered to be a part of 

the dynamic system, so we can represent a system as in the Figure 9.1b. In Figure 

9.1 the following system variables can be distinguished. 

- input u: the input u is an exogenous, measurable signal. This signal can be 

manipulated directly by the user; 
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- disturbance w: the disturbance w is an exogenous, possibly measurable 

signal, which cannot be manipulated. It originates from the environment and 

directly affects the behavior of the system. If the disturbance is not measurable, it is 

considered as possibly structured uncertainty in the input u or in the relationship 

between u and x, and indicated as system noise; 

- state x: the system state x summarizes all the effects of the past inputs u and 

disturbances w to the system. Generally the evolution of the states is described by 

differential or difference equations. Hence, the dynamic behavior of the system is 

affected by variations of the exogenous signals u and w and laws describing the 

internal mechanism of the system. In what follows, static systems, which do not 

show a dynamic behavior, are considered as special cases of dynamic systems and 

are simply described by algebraic relationships between u, w, and x; 

- disturbance v: as w, the output disturbance v is an exogenous signal, which 

cannot be manipulated. It represents the uncertainty (noise) introduced by the 

sensor, and is generally indicated as sensor noise; at the figure 10b we unite the two 

types of disturbances; 

- output y: the output y is the sensors output. It represents all the observable 

signals that are of interest to the user. In general, y is modeled as a function of the 

other signals. Since the sensor dynamics are ignored, the static relationship between 

y and x, v is expressed in terms of algebraic equations. 

Indicated signals can be vectors of different sizes, as notice at Figure 10b. 

Input and output signals of the object are sources of information when 

identifying dynamic objects. The object inputs are often stochastically functions of 

time, the statistical properties of which in general case are unknown. 

Data about the disturbance w, as a rule, are absent. It is assumed that the 

structure of this random function, i.e. its nature is known. It usually refers to the 

case that w is a normal random process, direct observation of which is impossible.  

                                                                   

 

 

 

 

 

Figure 9.1 – Identification object 

 

Without loss of generality we can put all these noises to the exit of the system 

(figure 9.2), where ỹ is the output signal "without noise". 

 

 

 

 

 

Figure 9.2 – Classical representation og dynamic system 

a) b) 

System u 

w 

y 

ỹ 
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Information about the object. We already said that a priori information 

defines the structure of the identified object. A posteriori information is the result of 

experiments. For continuous objects we have a record of continuous functions: the 

results of all measurements of object inputs t) and measurements of its outputs 

 for the same observation period (the interval 0<=t<=T). The minute is written 

in the form: (< >, 0<=t<=T). This means that the behavior of the object is 

recorded as n+m different curves: x1(t),..., xn(t); y1(t),..., ym(t) in this interval.  

In the discrete case we write the minute >, or in the 

form (< >, i=1,..., N; j = 1,...,N), where ). 

This minute is a table with n+m columns and N rows: 

x11 x21 … xn1 y11 y21 … ym1 

x12 x22 … xn2 y12 y22 … ym2 

         

x1N x2N … xnN y1N y2N … ymN 

  

9.2 The identification problem  

We have the object. In the process of the normal functioning of this object we 

can simultaneously measure its input x(t) and output y(t) signals (these are in 

general a random function). Using the results of measurements of x(t) and y(t) it is 

required to build a model of the specified object, that is, to find the operator 

determining  the relations between  output y(t) and input x(t) functions. We define 

not the operator of the object, only its approximate value, and its estimation. That 

is, we are searching the model operator, which is in a sense close to the object 

operator.  

Let the characteristic of the object is represented by the operator A0, where 

output signal y(t) corresponds to an arbitrary input signal x(t): 

y(t)=A0{x(t)}. 

The identification problem is to determine some estimation that is used as an 

approximation of the operator A0, i.e.: 

yм(t) = A{x(t)}. 

A0 is object characteristics, A is model characteristics. 

To speak about the correspondence between model and object is possible 

only if the estimation of the operator A is close in a way to its true value. 

"Proximity" is very relative, since the operators A and A0 may have a different 

structure, can be formulated in different languages, have a different number of 

inputs. In this regard, it is natural to estimate the proximity of the operators by their 

response to the same input signals x(t), that is, by the outputs y(t) and ym(t).  

The scheme of identification procedure is shown in the Figure 9.3. 
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Figure 9.3 - The scheme of identification procedure 

 

10 Lecture №10. Identification of linear dynamic objects. Direct methods 

 

The content of the lecture: methods of identification of linear objects; 

identification by using special signals. 

The goal of the lecture: study the methods of linear objects identification by 

using the transition function. 

 

10.1 Main groups of methods of identification of linear objects 

Determination of a dynamical model is very often impossible due to the 

complexity of the process, whose dynamics may be even (partially or completely) 

unknown. Even if we have a mathematical model, sometimes it is too complex to 

use for controller design (large state dimensions, nonlinearities, etc.). Model 

reduction is a way to simplify, and linear models are required. 

Now we will consider the identification methods of objects that are linear or 

approximated with sufficient accuracy by linear models. The experimental methods 

for determining the dynamic characteristics of such an object can be classified in 

various ways. Most commonly there is accepted the division of all methods into the 

following three main groups: 

- the first one includes the so-called direct methods that allow you to 

determine the sequence of discrete values of the operator. The following 

characteristics are defined by the methods of this group: amplitude )( jW  and )(  

phase characteristics in the frequency domain; the impulse response g(t) and 

transient function h(t) in the time domain;  

- parametric identification or the methods of determining the parameters of a 

model with known structure form a second group. In general, the estimation of the 

parameters of the model with given structure is carried out by minimizing the 

selected criterion. As a result of application of this group methods it is possible to 

define coefficients of the differential equation of linear one-dimensional object, and, 

therefore, and coefficients of a transfer function; 

  - the third group includes methods based on approximation of unknown 

dynamic characteristics of the object by analytical expressions, which are selected 

on the basis of available to the researcher a priori information about the object.  

Object 

Model 

x(t) 

e(t) 

Criterion 

y(t) 

yM (t) 
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Statistical methods are used here, which allow using random natural signals of the 

identified object as a source of information.  

    In accordance with the considered above classification of experimental 

methods of Control Objects modeling let’s consider the first group of methods - the 

direct methods. Specific test signals are used for identification by the direct 

methods. The first identification methods implemented in control systems were 

based on the use of step, impulse and frequency inputs. Most of these methods are 

limited to linear processes where the input / output relations received for one type of 

input signals are stored for all other types of input signals. They can also be used in 

linearized systems if signal levels are low.  

 

10.2 Approximation of the object model by the typical dynamic elements 

The idea of the method is the following. One of the three typical disturbance 

effects is supplied on the active object through the input: a step, an impulse, and 

harmonic oscillations of different frequencies. Step signal is most often used. The 

response of the object to such disturbances is a graph of the change in the time of 

the object output signal; it is called an experimental acceleration curve. Next, a 

special mathematical apparatus is used: a set of six typical dynamic elements. If we 

consider the object as a "black box", it turns out that control objects differencing by 

nature of the technological process, by the volume and configuration in dynamic 

mode are mathematically described in the form of the same model equation. In the 

automatic control theory were selected only 6 types of equations of the relationship 

of the object output signal with the input signal, which are called typical dynamic 

elements. Mostly typical equations of the relationship of typical dynamic elements 

are differential.  

The method of using a set of typical dynamic elements is as follows: each 

typical dynamic element has its own typical acceleration curve and a number of 

other typical characteristics. The experimental acceleration curve obtained at the 

operating object is compared with a set of six typical acceleration curves of typical 

dynamic elements, and by coincidence of the nature of the change in time of the 

experimental and any typical acceleration curve, the approximation of the object 

under study  is carried out by this typical dynamic element. Then the equation of 

this typical dynamic element becomes the equation of the object output and input 

signals relationship, or the desired mathematical model of the object. The values of 

the coefficients included in this typical dynamic element model equation are found 

by the object experimental acceleration curve. 

 

10.3 Identification using transient function 

The simplest input used for identification is a step signal. Such a signal at the 

input of the system can be formed, for example, by the sudden opening (or closing) 

of the input valve, switching on (or off) the control voltage or current, etc., as it is 

almost always possible without the use of special equipment. The ideal step signal 

has a rise time of zero, which is physically impossible, since the rise rate should be 
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infinitely high. Therefore, any real step input signal is only an approximation of the 

ideal step signal. However, if the signal rise time is much shorter than the higher 

harmonic period, the identification error becomes insignificant. In processes with 

disturbances or where measurements contain noise (which is usually in practice), 

appropriate noise filtering is required.  

Identification with the transition function is carried out autonomously, outside 

the control process, and therefore is applicable only to stationary processes. 

However, since the step signals affect many systems during switching on or during 

normal operation, the transient functions can be recorded without disturbing the 

normal operation of the system. This is an additional advantage of this method. It is 

obvious that it is necessary to assume that the system is stationary, since the 

identification results are considered reliable after the application of the step signal. 

In addition, it is assumed that the system is linear in the amplitude range of the step 

signal. 

In many cases, the transient function graphic is used to determine the transfer 

function of a system. This method is applicable to most types of linear systems (1 

and 2 orders and to higher order periodic systems). The most correctly graphical 

identification method using transient functions is applied to the first-order 

processes. Consider this method. 

The transition function graph is given. At time t0=0 input value x is changed 

to the value a by jumping. It is necessary to write the equation of the object. The 

required equation for the first-order object has the form: 

xky
dt

dy
Τ =+   or   

1)(

)(

+
=

pT

k

pX

pY
.                                                     

It is necessary to determine the parameters of the equation T and k. Consider 

several methods for defining these parameters: 

а) analytical solution of the equation  for initial conditions: y=0 for t=0 and 

x=a for t>0 is written in the following form: 
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−
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t
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Take two points on the graph (that's enough). Substituting the coordinates of 

these points in the solution expression, we obtain two equations for determining two 

unknown T and k:  
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t

eaktyeakty
21

1)(,1)( 21  . 

However, these equations are transcendental, so it is very difficult to calculate 

T and k from them. In addition, the accuracy of the solution is small, since only two 

points of the graph were used; 
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b) to obtain a more accurate solution, divide the graph into y1, y2 , y3,… 

ordinates with step ∆t. Using a common solution for the resulting points it can be 

written:   

)1(
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and so on. We have  
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and so on  
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t

=
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, then 
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and so on. 

We get 
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The difference in q values is due to errors in experimental data and the 

determination of y(t) values. After calculating the arithmetic mean q  of the obtained 

qi values, we can obtain a refined value of the time constant from the following 

expression: 
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Similarly, calculating 
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we determine the updated mean value k ; 

c) in practice, the following simpler method is used more often.  

At  we have , that is, through the ordinate of asymptotes 

(ordinate of asymptotes ) we can determine k. Coefficient k is the ratio 

between the system output steady state and the amplitude of the input signal. 

At t = T the function  

y (t)=b· 







−

−

Т

t

е1  = b· (1-e-1) = b· (1-0.37) = 0.63·b. 

That is, the time constant T of the first order system is equal to the period of 

time during which the transient function reaches 63% of its steady-state value. 

Noting in the graph 63% of the steady value of the transition process, determine the 

abscissa of this point (parameter T); 

d) a constant T can also be defined as follows. Differentiate the common 

decision and , then 
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here α is the angle of the tangent to the graph of the function when t = 0.  

Then  
tg

b
T = .  Thus, the value T is the t-segment of the axis is equal to the 

distance from the origin to the point at which the tangent intersects with the 

asymptote (because y   is the tangent angular coefficient). 

This solution is the simplest, however, not the most accurate, as it is very 

difficult to make an exact tangent and determine the exact ordinate b of asymptotes. 

If the transition function is time-delayed, that is, 0 for a period of time after 

the application of the step signal, then the system has a purely time delay, for which 

the Laplace transform is e-τs. Therefore, if the transient function of the system is 

equal to: 
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the transfer function of the system is obtained in the form of  

1+
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 ek
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s-τ

;   

e) graphic identification using the transition functions of the second order 

processes. 

 The second-order object is described by the equation 

.)( 21

2

21 xky
dt
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TT =+++  

The input signal is a step function. We compute the T1, T2, k constants 

provided that at t>0 the input signal is step signal x = a=1. 

As in the previous case, first write down the General solution of the equation: 
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the sought particular solution has the form: 
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Now, substituting the coordinates of the three points of the graph into this 

expression, we can get three equations for finding the desired values. These 

equations are transcendental, so it is very difficult to find a numerical solution. You 

can apply the method that was used for the first-order object again. 
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11 Lecture №11. Identification of the control objects using the direct 

methods 

 

The content of the lecture: identification of the control objects using the 

specific test signals. 

The goal of the lecture: learn methods of the identification of linear objects 

using the impulse transition function and frequency characteristics.  

 

11.1 Graphic identification using the impulse transition function 

Sometimes due to technological conditions it is not permitted to keep a single 

spike at the input of the object for a long time. Then there is given the indignation 

disturbance of the type of a single pulse, the duration of which is sufficient for a 

noticeable change of the output signal. Almost a single impulse is considered as two 

consecutive single jumps, only the first has an amplitude (+1) and the second (-1). 

At the output of the object we obtain the experimental impulse response – a graph 

of the object output signal changes in time. 

As it is known, 

)(

)(
)(

pX

pY
pW = , 

where Y(p) и X(p) are the transformations of the input and output signals to 

frequency domain. 

If the input signal is the single impulse, then Laplace transformation for him 

equals 1: X(p) = 1. Then the Laplace transformation of output Y(p) = W(p) and 

impulse transient function g(t) of the linear system is identical to the reverse 

Laplace transformation of its transfer function: 

).()}({)}({)( 11 tgpWLpYLty === −−  

The first order systems can be described by the following transfer function: 
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Then the impulse transfer function is written as 
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.                                                      (11.1)   

At the object output we have a graph of the impulse transition function. When 

0→t , function (11.1) asymptotically approaching the y axis, and when →t  this 

function tends to zero, remaining positive. Taking this into account, from (11.1) at 

the starting point we can record: 

T
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0 , 
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and at t=T   

,37.01
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k
e
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e
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k
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=== −
−

 

that is, at time T, g(t) reaches 0.37% of its steady-state value. From these 

expressions we define the required parameters of the transfer function. 

The following method can be also applied. By the geometric meaning, the 

derivative of the function at some point is the slope of the tangent at that point. For 

the function 

T

t

e
T

k
sWLtg

−
− == )]([)( 1    

we have  
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dt

dg −

−=
2

.            (11.2) 

 The equation of tangent is the equation of the line passing through the initial 

point t=0 with angular coefficient (11.2). The equation of this tangent line l(t) 

(equation of a line with known angular coefficient, passing through a given point) 

has the form: 

.)(
2

t
T

k

T

k
tl −=   

And at t =T , ,0)(
2

=−= t
T

k

T

k
tl  that is, the constant T is the intersection 

point of the tangent at the starting point of the graph g(t) with the time axis. 

 

11.2 Identification using the frequency characteristic 

Identification by using frequency characteristic is based on the application of 

sinusoidal signals and signals approximating a sine wave, the frequency of which 

varies in the considered interval. 

If at the object input a sinusoidal exposure )sin(0 tA   at different frequencies 

is applied, then the measured steady-state value of the output signal will be: 

),()](sin[)( 1 tntAty ++=    

where n(t)  is the measurement error.  

The frequency characteristics W(jω) is determined by applying sinusoidal 

input signals A0·sin(ωt) at different frequencies ω and recording the corresponding 

output signals A1·sin[ωt + φ]. For the purpose of obtaining the required frequency 

characteristic, the magnitude 
0

1

A

A
 and φ are determined for each of the considered 

frequency ω. That is, the records of input and output signals determine the 
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amplitude ratio at the frequency ωi and receive a .)( ijW   Phase shift φ(ωi) is 

derived from the comparison of the positions of maxima of the curves x(t) and y(t). 

As a result of the conducted experiments, by measuring the input and output 

signals, and then determining, as described above, the amplitude A(ω) and phase 

φ(ω) characteristics of the object, we can record: 

)sin()()(

),(cos)()(

iii

iii

AQ

AP





=

=
 

for each considered frequency, where P(ωi), Q(ωi) are the coefficients, 

respectively, of real and imaginary parts of complex transfer functions. 

Let’s remember that the structural parameters of the model (in this case, the 

order of the equation) are determined at the stage of structural identification. We are 

set by some (alleged) order of the equation. For definiteness, let’s suppose that it is 

the object of the third order. Then 
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We need to determine the coefficients of the transfer functions ai, bj. Let’s 

replace p on jω and write the transfer function as a sum of real and imaginary parts: 
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From this   
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Equating the coefficients of the imaginary and real parts of these complex 

expressions, we get the system of equations which is valid for all values of ω. 

Substituting in these equations the different values of frequencies ωi and the 

corresponding P(ωi), Q(ωi), we obtain the system of algebraic equations to 

determine the unknown coefficients of the transfer function. To clarify the values of 

the coefficients, the calculations are repeated several times on different frequencies, 

and an average of these calculations is taken. 

If the order of the object is higher than the supposed one, then in repeated 

calculations the values of the coefficients will significantly differ from the first 

ones. That is that strong difference of the coefficients indicates that the order of the 

object is lowered (but does not indicate the error of the experiment). 
 

12 Lecture №12. Parametric identification 

 

  The content of the lecture: set of the task and the methods of parameter 

identification of linear dynamic objects. 
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The goal of the lecture: to learn the procedure of minimization of the 

residual functional for the linear dynamic model. 

 

12.1 Problem formulation 

Parametric identification is the methods of finding of the model with known 

structure parameters using measured data. We assume that the structure and the 

order of the model of the object are already known. 

We define not the operator of the object, only its approximate value, its 

assessment. That is, we build the model operator, which in a sense close to the 

object operator. The proximity of the operators is assessed on their reaction to the 

same input signals x(t), that is, at the outputs of the object y(t) and the model yм(t) 

according to some accepted criterion. In this case it is required to work out such a 

plan of observation over x and y and find such method of computing estimates, 

which would let receive in some sense the best estimation of the unknown 

parameters of the model. 

In the general case we use the function ρ(y,yм), which depends on y, yм, and  

does not depend on A and is called the loss function or the residual function (the 

discrepancy function). This function has the following properties: 

1)  ρ(y,yм)>=0 for any y,yм. 

  2) ρ(y,yм) = 0 then, and only then, when y=yм. 

  3) ρ(y,yм) is continuous and convex that is, this function always lies above a 

line segment joining any two points y,ym. 

  A common measure of proximity in the whole observation interval may be the 

following functional: 

     dtyyQ

T

м=
0

),( .  

The functional Q is called the residual one, this functional depends on the 

operator A.  

If by the physical sense of the problem the importance of information at 

different points in time vary, it is advisable to introduce a weighting function h(t)>0 

with natural regulation: 
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The choice of the function h(t) is determined by the value of the information.  

For the discrete case, the functional Q is written by this way:  
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where hi >0 (i=1,…,N, ∑ hi =N) is weight of information at the time i. 

Thus, the degree of residual (degree of discrepancy) of the model and the 

object operators can be expressed in the form of the functional that depends 

explicitly on the model operator A.  

It is natural to build the identification process in such a form so it minimizes 

the residual, i.e. to solve the problem of the functional Q minimization on operator 

A: 

.min)(


→
A

AQ    

We minimize this functionality by varying operator A not arbitrarily, and in a 

certain class of operators’ Ω.  The result is the operator A* (not necessarily unique) 

with the property: 

),(min)( ** AQAQQ
A 

==  

that is, the discrepancy in this operator is minimal. 

The using of a minimization procedure for solving the problem of parametric 

identification is important. 

The choice of the parameters estimation criterion depends on the interference 

nature, i.e. their statistical properties. In a normal distribution of noise the highest 

accuracy gives the mean-square criterion. The normal distribution is used most 

often to describe the properties of various random variables. A theoretical 

justification of the role of the normal distribution is the central limit theorem. 

According to this theorem, in most situations, when independent random variables 

are added, their properly normalized sum tends toward a normal distribution even if 

the original variables themselves are not normally distributed. This does not mean 

that any random variable, unless otherwise proven, is the subject to this distribution. 

The theorem is a key concept in probability theory because it implies that 

probabilistic and statistical methods that work for normal distributions can be 

applicable to many problems involving other types of distributions. Normal 

distribution has the advantage that it has convenient mathematical properties. 

Therefore, most statistical methods are built on the assumption that the investigated 

value submits to normal distribution, although in practice this assumption always 

requires special inspections. 

 

12.2 Dynamic deterministic model identification 

 In the one-dimensional case, the relationship between the input x = x(t) and 

output y = y(t) variables is an ordinary differential equation: 
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together with the initial conditions for  .1,...,1,0, −= ni
dt

yd
i

i

 

The model is determined by (p+l+1) parameters c = (a0,…,ap-1,b0,…,bl). 

To describe the dynamics of the objects that are characterized by discrete 

values of input and output signals instead of differential equations, one can use 

difference equations. Denoting the discrete values of the input and output signals 

respectively xk-j = x[(k-j)] and yk-j = y[(k-j)], the difference equation (analogue of 

the differential) can be written in the form: 

         
....... 12312111 +−−−− ++++=+++ kllkkkpkpkк xbxbxbxbyayay
                     

(12.2) 

It is also necessary to specify initial conditions. 

Structural parameters of the model are p and l, which must be selected in the 

process of structural identification. 

The initial information for constructing the identification procedure is 

structure of identifiable models and observations {xt, yt} in the interval [0,T]. We 

need to determine the coefficients of the equations ai, bj. 

In general, at the substitution of observations in the model equation (12.1) (or 

(12.2)) the equality in this equation is not fulfilled. It is necessary to choose ai, bj  in 

such a way that in equation (12.1) (or (12.2)) the right and the left sides differ in the 

smallest way. 

Let’s construct the residual function in the form of the mean squared 

difference of the right and left side of equation (12.1) after the substitution there of 

the functions xt, yt – the observations of the object: 

                         
 

==

−=

T

o

l

j

j

tj

p

i

i

ti dtxbya[Q(c)
0

2

0

)( ] .                                         

(12.3) 

 We minimize this functional by ai и bj:  

                                                      
.min)( →cQ  

The minimization result is a vector с*; it gives the values of the identifiable 

parameters. 

 The problem of the functional (12.3) minimization are solved by the usual 

methods of finding the minimum of a smooth function. Equating to zero the 

derivative of (12.3) for all unknown parameters (since the function is smooth), we 

get the system of linear equations whose solution is the solution of the minimization 

problem: 
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  After obvious transformations we get the system of linear algebraic equations:  
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The resulting system can be solved by standard computational methods. 

However, to calculate the coefficients of this system we need to know the 

derivatives of the input xt and output yt signals of the object. It is simply, if these 

signals are given in an analytical form. Otherwise, it is necessary to choose a 

method of obtaining derivatives; it depends on specific conditions and must be 

determined each time specially: 

1. We can use numerical differentiation, that is, to use the estimation of the 

derivatives:  
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where Δt is the interval characterizing a accuracy of estimations. 

This method has two disadvantages. Firstly, the accuracy of the estimation of 

the derivatives decreases rapidly with increasing the order of derivatives. Practically 

a good rate derivative above second order is not possible. Secondly, to estimate the 

i-th derivative at t=0 we must have the value of the function at t<0, that is z(-∆t), z(-

2∆t), ..., z(-i∆t). Since these values are not in measurements, we have to take in 

(12.3) the limits of integration not [0, T], and [i•∆t, t], where i is the number of the 

function maximum derivative. 

2. We can use the decomposition in series by a given system of functions 

(due to the presence of the operation of the smoothing error in the definition of 

derivative will be much less). 

In order for the identification problem has a solution, it is necessary that the 

determinant of the system (12.4) was not equal to 0. If this condition is not met, it is 

necessary to take a different implementation of the object inputs and outputs, or to 

reduce the number of identifiable parameters (i.e. p and l), that is to reduce the 

model order.  

 

13 Lecture №13. Nonparametric identification of linear dynamic objects 

 

The content of the lecture: the problem of nonparametric identification of 

linear dynamic objects. 
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  The goal of the lecture: to study the methods of solution of nonparametric 

identification problem.  

 

          13.1 The general approach to the definition of the nonparametric model 

Earlier the focus was on methods that directly use the specific object 

responses, in particular the step, impulse and sine-wave responses. The methods of 

determining the dynamic characteristics of the investigated object using artificial 

test signals and measuring the response is often inapplicable for the following 

reasons: 

- undesirability or impossibility to submit to the object's input special test 

signals, as this leads to the disruption of the normal way of the processes in the 

object; 

- very often the uncontrolled disturbances  are superimposed on these 

signals, so it is impossible to determine the dynamic characteristics by the typical 

input signals. 

In many applications noise is clearly present. Now methods that are less 

sensitive to noise, and thus very useful under practical circumstances, are presented. 

It is the method based on statistical representations. The statistical method allows 

using the random natural signals of identifiable object as the source of information. 

This approach is used for nonparametric identification.  

If the model operator contains unknown functions that are to be defined in the 

process of identification procedure, the identification is called nonparametric. We 

will characterize the nonparametric model by the impulse response. This is due to 

the fact that the specificity of a linear dynamic object is uniquely identified by its 

response to a single impulse input. 

In the stationary case (considered by us) the impulse transition function 

depends only on one variable – time: 

    g = g(t),  0 <= t<∞. 

The input–output relationships with single input and single output (SISO) can 

be represented in the following general form: 

   


−=
0

)()(  dtxgy(t) ,                                               (13.1) 

which is also indicated as the impulse response model representation. 

The output y(t) is presented in terms of the convolution integral of g(t) and 

x(t). Therefore these models are also called convolution models. 

This model is formed the basis of classical data-based or nonparametric 

identification methods. The adjectives "data-based" and "nonparametric" express 

the very limited prior knowledge used in the identification procedure; the prior 

knowledge is limited to assumptions with respect to linearity and time-invariance of 

the system under consideration.  

The weight function of stable systems has the following obvious property: 
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                              limg(t) = 0 at  t       ∞. 

  Physically this means that a stable system after pulsed effect always returns to 

its original state. Therefore, there is no need to integrate in (13.1) to infinity, enough 

to some T for which  

                     max)( gtg  
 
at t>T , 

that is, the weight function, starting from the moment T, does not exit the 100α-

percent corridor (usually α = 0.05). 

Now the convolution integral can be written in the following form: 

                  −=

T

dtxgy(t)
0

)2.13()()(   

  Let’s consider the equation (13.2) as the supposed model, which gives the 

possibility to determine the desired dynamic characteristic of the object: pulse 

transfer function. 

 As we mentioned above, the results are sensitive to noise as raw input–output 

data sets are used. Therefore, the correlation methods have been developed to 

overcome this noise sensitivity.  
In order to arrive at these correlation methods, let us first introduce the 

autocorrelation function  of a signal x(t): 

                      , 

 where τ is the lag time.  

The notation M{.} stands for the expectation operator, or in other words, it 

signifies the mean value of the particular function.  

According to ergodic hypothesis: for a stationary random process an average 

by the set equal to the average by time.  In what follows, this expectation will 

always be interpreted as the time average: 

 

 

 

Notice that this function is now only a function of lag τ and not of t. Hence, it 

includes some time-invariance or stationarity property. The integral is taken over 

the interval [−T,T ] with T →∞, because at this stage transient responses will be 

excluded. This function is even function:  

In addition to the autocorrelation function, the cross-correlation function 

 between two different signals [(t) and y(t) is introduced and is defined as: 

                            . 

Similarly, 
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Although the cross-correlation function also exists for negative lags, it is not 

an even function. Notice that for negative lags, the correlation between inputs at 

time instant i and outputs at i + l, with l < 0, is calculated. These correlations are 

seldom of interest, because in causal systems the output does not depend on future 

inputs. Hence, for practical interpretation, only the function values for positive lags 

are of interest.  

In future we will use the following simplified formulas: 

 

 

                                                                                                                             (13.3) 

 

 
 

It is also important to note here that both the auto- and cross-correlation 

functions are important in the data-based identification of LTI systems, because 

they are closely related to the unit-pulse response of the system. 
 

13.2 Wiener-Hopf equation 

   Determination of the impulse transient function directly from the convolution 

equation is undesirable due to the following reasons: integral equations of the form 

(13.1) are poorly conditioned equations. In addition, as a result of measurements, 

the values of random processes at the input and output of the object are obtained 

with large errors that need to be smoothed. To increase the quality of restoration of 

impulse transfer function there is necessary the pre-processing working out of the 

signals. To minimize the effect of noise the correlation functions of the signals are 

used. 

  We have an expression (13.2), but y(t) is related to x(t) by equations (13.3): 
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This equation is called the Wiener-Hopf equation. It can be interpreted as 

equation (13.2) if Rxx(t) is considered as input action and Ryx(t) as response.    

Identification is reduced to the solution of the equation (13.4) in the interval 

[0,T].  But since g(t) is a fading function, that is, lim g (t) = 0 at t→∞, , then, 

starting from a certain point in time Tg, its values are uninformative. Usually Tg is 

determined prior to identification. For example, you can determine the time TR at 
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which |R(τ)|<= 0.05•Rmax . Here TR is different for Rxx(t) and Ryx(t). But since we are 

interested in the dynamic properties of the object, and they are reflected in Ryx(t), 

this value is determined by Ryx(t). 

Taking into account the above, the basic equation of statistical identification 

takes the form of: 

.)()()(
0

 −=

gT

xxxy dRgR   (13.5) 

Thus, the problem of dynamic characteristics determination is divided into 

the following stages: 

1) Recording of random processes on the input and output of the object. 

2) Calculation of the correlation functions of the input signal and the cross-

correlation function of the input and output signals. 

3) The definition of the parameter TR. 

4) Solution of the integral equation (8.2.7). 

  Thus, the problem of determining the impulse transient function is presented 

as the problem the Wiener-Hopf equation solution. Next, we consider methods for 

solving the Wiener-Hopf equation. 

 

14 Lecture №14. Impulse Response Identification using the Wiener–Hopf 

equation 

 

  The content of the lecture: the methods of determining the smoothed 

impulse transition function 

The goal of the lecture: learn the methods of solving the problem of 

nonparametric identification. 

 

To determine the dynamic characteristics of the object - impulse transition 

function g(t) as the intended model we consider the convolution equation:  

                                    
 −=

T

dtxgy(t)
0

,)()( 

                                        

(14.1) 

where x(t) and y(t) are the input and output signals of the object. 

 

14.1 Numerical method of Wiener-Hopf equation solution 

One of the methods for solving the equation (14.1 is algebraic. We present 

(14.1) as a system of linear algebraic equations. To do this, move on to discrete 

time, we write the integral in the form of a sum. The interval is divided into m equal 

intervals t, 2t, …, mt and the integral is written approximately as a sum: 
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m

t

xx =−
=

                    (14.2) 

Denoting gi = g(it) and assuming τ = t, 2t,..., mt we will get the system: 
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                  QGRx = ,                                                 (14.3) 

where G = [g1, g2,…,gm]T, Q= [q1, q2…, qm]T, 
Δ

Ryx(τy
qi

)
= , 

           Rx is a square symmetric matrix mхm: 
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Thus, we obtain a system of m linear equations for determining m values of 

the ordinates of the weight function g(t) at points t, 2t,..., mt.     

 In real objects usually g (0) = 0, so in the right parts of the equations (14.3)  

the first components can be removed. In addition, to preserve the diagonal 

symmetry of the system determinant, it is often )(yxR shifted by one step, that is, the 

system (14.3) is considered not from the first row, but from the second. If the 

interval ∆ is small enough, the error will be insignificant. 

 

14.2 Using approximation procedure in the problem of nonparametric 

identification  

The Wiener-Hopf equation is poorly-conditioned: even small variations in the 

initial values of correlation functions lead to large variations of solutions. In 

addition, instead of the true values of correlation functions, their estimates were 

used. Therefore, the solution of the Wiener-Hopf equation is obtained with large 

errors. Although even obtained impulse transient functions have a small root mean 

square error close to a minimum, these functions do not correspond to the physical 

sense of the processes in the object. The physical meaning have a smooth solution. 

We consider several methods for the use of approximating polynomials in 

solving the problem of nonparametric identification. 

1. The original model is the Wiener-Hopf equation (14.3). Solving this 

equation by the algebraic method, we determine the discrete values g0, g1,…, gm of 

impulse transition function. 

  The resulting sequence of discrete values can be presented using any 

approximating polynomial:  

                                              .
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  where {φk(τ)} is any system of approximating orthogonal functions. 

 In the case of orthogonal approximating functions, the approximation 

coefficients are determined according to the formula: 



58 
 

     

=

=
m

kk ga
0

),()(


                                           (14.5) 

The question arises about the choice of the degree N of the approximating 

polynomial. This issue is very complicated and is currently not solved until the end. 

In this problem there are the following approaches: 

a) in some cases the nature of the impulse response function is known. This 

allows to determine the degree N of the approximating polynomial (14.3) taking 

into account the specific form of the approximating functions; 

b) one approach to the determination of the approximating polynomial degree 

of N is based on the following principle. The value of N is found using 

minimization of functional: 

                     
,
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where yxR


is the result of the substitution of the polynomial (14.4) in the 

system of equations (14.3) instead of impulse  function g(t). That is, the variance Ryх 

is minimized. 

2. We apply a general approach to the construction of an object's linear 

model: the method of minimizing the mean square criterion. The identification 

criterion can be written in the form: 

  .min)]()([
0

2* →−= 
T

dttytyQ                                                

Here y(t) is the object output signal, y*(t) is the model output signal, which is 

determined from the convolution equation: 

             dtxgty

T

 −=
0

** )()()( .                                                     (14.6) 

 We use the procedure of functions approximation. The approximating 

functions are usually chosen in the class of orthogonal functions.  

          We will approximate the impulse transition function with a polynomial: 
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(14.7) 

 where  {φk(τ)} is the system of the approximating orthogonal functions; 

                      N is the polynomial order. 

The coefficients ak of the decomposition (14.3) is still unknown.  

Substituting in equation (14.6) the expression for the impulse transition 

function (14.6), we have: 
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Then the criteria of identification will get the form: 

        

min])()()([)]()([
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To solve the problem of minimization it is necessary to determine the 

derivatives 
ia

Q




with respect to all unknown parameters. The best choice is for 

0=




ia

Q
. In the end, we get the system of linear algebraic equations for determining 

unknown coefficients of the decomposition (14.7). As a rule, in practice the value of 

N<<m, i.e. the received system has a low order and well conditioned due to the 

smoothness of the system of functions {φk(τ)}. 

However, the problem of choosing the degree N of the approximating 

polynomial remains.   

3. The original model is the Wiener-Hopf equation: 

)8.14(.)()()(
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 dRtgR

T

xxyx −= 
                                            

 

 Impulse transition function is approximated by the expression (14.7), where 

the unknown coefficients of the approximation are defined as: 
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where m is the number of points for which the interval of modeling is 

divided. 

We present the cross-correlation functions of the input and output signals of 

the object using approximating polynomials on the same system of functions: 
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in these expressions the coefficients 
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can be considered as given, since the values of correlation functions at the nodes are 

given and orthogonal functions {φ(τ)} are known. 

We substitute approximating polynomials in the Wiener-Hopf equation. Due 

to the orthogonality of the functions {φj(τ)} we obtain a system of linear algebraic 

equations for determining the unknown decomposition coefficients ak, which also 

has a low order and is well conditioned by the smoothness {φj(τ)}. This makes it 

possible to obtain sufficiently accurate estimates of pulse transient functions by 

simple calculations.  

In the process of solving, there are difficulties associated with the choice of 

the number of approximating functions, which were mentioned earlier. 
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4. Input and output signals of the object are approximated on the interval 

observation of a linear combination of some functions. The desired pulse transition 

function also approximated the same system function. For example, suppose that 

signals are distributed into series of orthogonal polynomials {pi(t)}: 

 

 

 

where  

 

 

So, input and output signals of the object are presented in the form of power 

series: 
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   here xi yi are known coefficients (since we know the dimension of the input 

and output signals): 

 

 

 

Impulse transition function also to be found in the form of a power series: 
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where the coefficients of the series gi are required to be determined. 

Substituting these expressions in the convolution integral, we get the system of 

equations: 

 

 

 

and equating the coefficients at equal degrees of variables we get the system of 

algebraic equations for determining unknown coefficients of series gi: 

 

 

 

 

    

                                                         

 

   15 Lecture №15. Identification of nonlinear objects 

 

  The content of the lecture: the characteristics and methods of identification 

of nonlinear objects. 
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  The goal of the lecture: to learn the methods of identification of nonlinear 

objects. 

 

 The identification of nonlinear dynamic objects is a very complex problem, 

since there are an infinite variety of types of nonlinear operators describing the 

objects. In addition, the transition process of the non-linear object depends not only 

on the shape but also on the amplitude of the incoming signal and presents complex 

and conflicting requirements to the selection of a test signal with active 

identification.  

As in the linear case, the identification problem consists in approximating the 

behavior of the object with such operator F(x), which would minimize the residual 

functional. Usually F(x) can be represented as ), i.e. in the form of a known 

operator with unknown parameters , which must be estimated in the identification 

process.  

Thus, the following problem is solved: 

 

for continuous case, and 

 
for the discrete case. 

The solution is the values of the unknown parameters  

There are different ways to represent the function : in the form of 

piecewise-linear or linear functions, in the form of an expansion in a given system 

of functions, etc.  

The model in its simplest one-dimensional case is expressed by the nonlinear 

differential equation: 

  ),,...,,,...,( )()1()( xxyyfy lpp −=  

where f  is a nonlinear scalar function of p+l+1argument, which must be 

identified by observations .0,, Ttyx tt   

In the vector form this equation has the form: 
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(by differentiating the original functions and using the smoothing procedure). 

For practical application we recommend the following methods. 

1. The functional models. Let F is a known function with unknown 

parameters. In this case, the system of equations: 

  ),,( cxyFy =  

is integrated numerically (for example by Runge-Kutta methods) at the given initial 

conditions and fixed values of the identifiable parameters ),...,( 1 kccc . 

The obtained solution ),( ctyy =
 is compared with observations ty

 
and the 

the residuals function is obtained:  
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T

t dtyctycQ
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2 ,]),([)(  

the minimization of which solves the problem of identification. 

If the structure of the model is selected in the class of differentiable functions, 

then this problem is solved by the system of transcendental equations (which is also 

not an easy problem): 

  ,,...,1,0],[2 kj
C

F
yF

C

Q

j

t

j

==



−=




 

where [,] is the scalar product. 

Otherwise you can use the search methods of minimization, which are 

implemented with recursive expressions that define the transition from (i-1) 

approximation to the i-th: 

  ,1 iii ccc += −  

where step ic  depends on 1−ic and the searching algorithm.  

The most commonly used algorithm is the gradient method: 

  ),( 1

2

1 −− −= iiii cgradqcc   

where qi is the discrepancy on the i-th step when the values of the parameters 

in (i-1)-th step. 

To realize the search we need only the value of the function F at different jc , 

so it is possible to create a model not only in the class of analytic descriptions (in 

this regard, this approach is called functional). 

2. Models, linear with respect to the estimated parameters. They are the 

special case of functional models and are formed in the result of the decomposition 

of the desired function for a given system of functions: 
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where )}(),...,({)( 1 xxx kj  = is the given system of functions, which is 

determined at the structural identification stage. Approximation can be done, for 

example, with the help of polynomials. 

The task of finding the expansion coefficients is solved by known methods. 

          3. The methods of linearization, that is, the approximation of nonlinear 

relations in a given range of arguments by linear expression. This is the most 

developed group of identification methods of nonlinear systems. The basis of 

linearization of the nonlinear equations is the assumption that in the investigated 

dynamic process the variables are changed so that their deviations from the steady-

state values are sufficiently small. The condition of sufficient smallness of the 

dynamic variables of deviations from some steady-state values for the automatic 

control system is usually performed. The linearization is performed by decomposing 

nonlinearities in a Taylor series in the neighborhood of the initial stationary mode 

saving only the linear parts of the decomposition and subsequent subtraction of the 

statics equations. With the help of this procedure, there are obtained the equations 

of the model not in regard to its variables, but in regard to deviations of variables 

from the initial steady state. 

4. Piecewise-linear models. In this case, there determined the supporting 

sequence to define the values of functions. Then the task (1) is 

solved, where F is the piecewise linear function given by its base sequence. This 

task is solved by one of the search methods. 

5. Identification of nonlinear functions of a priori known types. 

If there is a priori information about the type of nonlinearity, the parameters 

of nonlinear functions can be identified with the use of change of variables in the 

initial analytical expression or by transforming the initial expressions to more 

simple relations. 

For example, we should to identify the parameters of a following nonlinear 

model: 

 

Let's take a logarithm of this expression: 

 

  

Denote: lgy=Y, x=X,  lga=A, 

then get the linear model: 

Y=A+b·X. 

The parameters of this linear model are determined by one of the considered 

methods. Now, applying the potentiating procedure, we will get the parameters of 

the initial nonlinear model. 

In all cases, identification can be performed only in the assumption of some 

specific type of nonlinear approximating functions, the parameters of which are 

subject to identification. 

.xbeay =

.lglg bxay +=
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