

Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра математики и математического моделирования

СЛУЧАЙНЫЕ ПРОЦЕССЫ

Методические указания и задания по выполнению расчетно-графических работ для студентов специальности 5В100200 «Системы информационной безопасности»

СОСТАВИТЕЛИ: Толеуова Б.Ж., Василина Г.К. Случайные процессы. Методические указания и задания к выполнению расчетно-графических работ для студентов специальности 5В100200 - Системы информационной безопасности. - Алматы: АУЭС, 2019. - 44 стр.

Методические указания и задания к расчетно-графической работе содержат типовые расчеты N_1 «Случайные события и случайный процесс», N_2 «Случайные многомерные величины» для студентов специальности 5B100200 - Системы информационной безопасности. Приведены основные теоретические вопросы программы. Дано решение типового варианта.

Ил.5, табл.81, библиогр. назв. - 9

Рецензент: к.т.н., доцент каф. Электротехники Н.М.Айтжанов

Печатается по плану издания некоммерческого акционерного общества «Алматинский университет энергетики и связи» на 2019 г.

© НАО «Алматинский университет энергетики и связи», 2019 г.

Введение

В природе, технике, экономике нет явлений, которых присутствовали бы элементы случайности. Существуют два подхода изучения этих явлений. Один из них – классический, состоит в том, что учитываются основные факторы, определяющее данное явление, а влиянием факторов, приводящих к случайным отклонениям его результата, пренебрегают. При исследовании многих явлений такой подход неприемлем. Необходимо учитывать не только основные факторы, но и второстепенные, приводящие к случайным искажениям результата. Элемент неопределенности, свойственный случайным явлениям, требует специальных методов изучения. Изучением специфических закономерностей, наблюдаемых в случайных явлениях, занимается теория вероятностей.

Методические указания содержат расчетно-графические работы по разделам «Случайные события и случайный процесс» и «Случайные многомерные величины».

В каждой части приведены теоретические вопросы и расчётные задания. Дано решение типового варианта.

1 Расчётно-графическая работа №1. Случайные события и случайный процесс

Цели: ознакомиться с понятием случайного события, его вероятностью, основными теоремами теории вероятностей, ознакомиться с законами распределения и числовыми характеристиками случайных величин, основными законами распределения случайных величин, а также понятием случайного процесса и случайной функции.

1.1 Теоретические вопросы

- 1. Предмет теории вероятностей и математической статистики. Классическое определение вероятности. Алгебра событий. Теоремы сложения и умножения вероятностей. Основные формулы.
- 2. Дискретные и непрерывные случайные величины. Законы распределения случайных величин и их числовые характеристики.
- 3. Основные виды типичных распределений: Пуассона, биномиальное, равномерное, показательное, их числовые характеристики. Нормальное распределение, основные числовые характеристики.
- 4. Предельные теоремы. Характеристические функции и их свойства. Центральная предельная теорема.
- 5. Случайный процесс. Понятие случайного процесса и случайной функции. Процессы с независимыми приращениями. Цепи Маркова.
 - 6. Вычисление предельных вероятностей. Стационарное распределение.

1.2 Расчётные задания

- 1. В коробке n шаров, среди них m синих, остальные белые. Найти:
- а) относительную частоту синих шаров;
- б) вероятность того, что среди k наугад взятых шаров будет m_1 синих;
- в) вероятность того, что среди m наугад взятых шаров будет хотя бы один синий.

	n	m	k	$m_{_1}$		n	m	k	$m_{_1}$
1.1	100	20	5	3	1.16	86	18	10	8
1.2	95	18	8	4	1.17	81	16	12	7
1.3	90	16	5	2	1.18	76	14	7	4
1.4	85	14	7	4	1.19	71	12	5	3
1.5	80	12	8	3	1.20	94	10	9	3
1.6	75	10	15	5	1.21	89	8	9	5
1.7	70	8	9	3	1.22	84	6	7	5
1.8	98	6	10	4	1.23	79	17	6	4
1.9	93	19	7	2	1.24	74	15	8	4
1.10	88	17	6	3	1.25	92	13	10	7
1.11	83	15	5	2	1.26	87	11	8	5
1.12	78	13	5	3	1.27	82	9	5	3
1.13	73	11	9	4	1.28	77	7	8	5
1.14	96	9	7	4	1.29	72	5	7	1
1.15	91	7	5	2	1.30	90	16	5	2

- 2. В цехе имеется три резервных электродвигателя. Для каждого из них вероятность того, что в данный момент он включен, соответственно равна p_1 , p_2 , p_3 . Найти вероятность того, что включены:
 - а) только один электродвигатель;
 - б) три электродвигателя;
 - в) хотя бы один электродвигатель.

	p_1	p 2	p 3		$p_{_1}$	p_2	p_3		$p_{_1}$	p 2	p_3
2.1	0.9	0.7	0.4	2.11	0.5	0.9	0.8	23.21	0.7	0.5	0.6
2.2	0.8	0.6	0.5	2.12	0.4	0.8	0.9	2.22	0.6	0.4	0.7
2.3	0.7	0.5	0.6	2.13	0.9	0.7	0.4	2.23	0.5	0.9	0.8
2.4	0.6	0.4	0.7	2.14	0.8	0.6	0.5	2.24	0.4	0.8	0.9
2.5	0.5	0.9	0.8	2.15	0.7	0.5	0.6	2.25	0.9	0.7	0.4
2.6	0.4	0.8	0.9	2.16	0.6	0.4	0.7	2.26	0.8	0.6	0.5
2.7	0.9	0.7	0.4	2.17	0.5	0.9	0.8	2.27	0.7	0.5	0.6
2.8	0.8	0.6	0.5	2.18	0.4	0.8	0.9	2.28	0.6	0.4	0.7
2.9	0.7	0.5	0.6	2.19	0.9	0.7	0.4	2.29	0.5	0.9	0.8
2.10	0.6	0.4	0.7	2.20	0.8	0.6	0.5	2.30	0.4	0.8	0.9

- 3. Вероятность успешной сдачи студентом каждого из пяти экзаменов равна p . Найти вероятность успешной сдачи:
 - а) трех экзаменов;
 - б) менее двух экзаменов;
 - в) не менее двух экзаменов.

$N_{\underline{0}}$	p	\mathcal{N}_{2}	p	№	p	№	p	№	p	\mathcal{N}_{2}	p
3.1	0,9	3.6	0,4	3.11	0,5	3.16	0,8	3.21	0,3	3.26	0,6
3.2	0,8	3.7	0,3	3.12	0,6	3.17	0,7	3.22	0,2	3.27	0,7
3.3	0,7	3.8	0,2	3.13	0,7	3.18	0,6	3.23	0,3	3.28	0,8
3.4	0,6	3.9	0,3	3.14	0,8	3.19	0,5	3.24	0,4	3.29	0,9
3.5	0,5	3.10	0,4	3.15	0,9	3.20	0,4	3.25	0,5	3.30	0,9

4. Промышленное оборудование состоит из n транзисторов. Вероятность выхода из строя одного транзистора равна p. Найти вероятность выхода из строя k транзисторов.

No	p	n	k	No	p	n	k	No	p	n	k
4.1	0.002	1000	7	4.11	0.01	2000	8	4.21	0.004	5000	9
4.2	0.003	1000	7	4.12	0.01	3000	8	4.22	0.005	6000	9
4.3	0.004	1000	7	4.13	0.02	2000	8	4.23	0.01	4000	9
4.4	0.005	1000	7	4.14	0.01	5000	8	4.24	0.01	5000	9
4.5	0.006	1000	7	4.15	0.02	3000	8	4.25	0.01	6000	9
4.6	0.007	1000	7	4.16	0.01	7000	8	4.26	0.007	1000	9
4.7	0.008	1000	7	4.17	0.02	4000	8	4.27	0.008	1000	9
4.8	0.009	1000	7	4.18	0.01	9000	8	4.28	0.009	1000	9
4.9	0.01	1000	7	4.19	0.02	5000	8	4.29	0.01	1000	9
4.10	0.011	1000	7	4.20	0.011	1000	8	4.30	0.012	1000	9

- 5. Вероятность наступления события A в каждом испытании равна p. Найти вероятность наступления события A при n испытании:
 - а) ровно k_{2} раз;
 - б) для 1-15 вариантов от k_1 до k_2 раза; для 16-30 вариантов более k_2 раз.

$\mathcal{N}\!$	n	$k_{\scriptscriptstyle 1}$	k_{2}	p	No	n	$k_{\scriptscriptstyle 1}$	k_{2}	p
5.1	100	80	90	0.8	5.16	100	90	95	0.6
5.2	100	85	95	0.8	5.17	100	62	82	0.6
5.3	100	70	95	0.8	5.18	100	50	70	0.8
5.4	100	83	93	0.7	5.19	100	55	75	0.8
5.5	100	50	60	0.7	5.20	100	45	80	0.8
5.6	100	65	75	0.7	5.21	100	40	60	0.8
5.7	100	70	80	0.7	5.22	100	35	70	0.3
5.8	100	40	50	0.6	5.23	100	50	80	0.3
5.9	100	65	80	0.75	5.24	100	40	65	0.3

5.10	100	70	85	0.75	5.25	200	45	75	0.4
5.11	100	78	92	0.75	5.26	200	100	150	0.4
5.12	100	20	60	0.7	5.27	200	80	170	0.4
5.13	100	30	85	0.7	5.28	300	150	180	0.8
5.14	100	40	79	0.7	5.29	400	100	190	0.6
5.15	100	80	95	0.6	5.30	400	200	295	0.7

- 6. Для дискретной случайной величины X, заданной рядом распределения, требуется найти:
 - а) функцию распределения F(x), построить график F(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;

в) вероятность попадания X в интервал (a;b).

	, вероит	HOCID HO	падания	71 D HIII	ервал (а	,0).			
$N_{\underline{0}}$	X	$X_{_1}$	X_{2}	$\boldsymbol{\mathcal{X}}_{\scriptscriptstyle 3}$	$X_{_4}$	X_{5}	$\mathcal{X}_{_6}$	a	b
	p	$p_{_1}$	$p_{_2}$	$p_{_3}$	$p_{_4}$	p_{5}	$p_{\scriptscriptstyle 6}$		
6.1	X	0	1	2	4	6	9	-2	7
-	P	0.05	0.15	0.3	0.25	0.15	0.1		
6.2	X	-3	-2	-1	0	2	4	-1	3
	P	0.15	0.3	0.02	0.14	0.18	0.31		
6.3	X	1	2	3	5	7	8	-3	6
	P	0.3	0.14	0.16	0.1	0.2	0.1		
6.4	X	-4	-3	-2	0	1	2	0	1
	P	0.2	0.08	0.23	0.27	0.12	0.1		
6.5	X	1	2	4	5	7	9	3	8
	P	0.19	0.21	0.06	0.14	0.12	0.28		
6.6	X	-1	0	2	3	5	7	-4	4
	P	0.26	0.14	0.07	0.2	0.03	0.3		
6.7	X	-2	-1	0	3	5	7	1	6
	P	0.18	0.09	0.01	0.2	0.22	0.3		
6.8	X	1	2	4	5	6	8	0	6
	P	0.3	0.17	0.13	0.1	0.2	0.1		
6.9	X	1	2	3	4	7	9	5	8
	P	0.11	0.29	0.06	0.14	0.17	0.23		
6.10	X	0	1	2	3	7	9	4	8
	P	0.06	0.14	0.3	0.25	0.15	0.1		
6.11	X	-3	-2	0	1	2	4	-1	3
	P	0.15	0.3	0.01	0.14	0.19	0.31		
6.12	X	-1	0	3	5	7	8	1	6
	P	0.25	0.14	0.16	0.1	0.2	0.15		
6.13	X	-4	-3	-2	0	2	4	-1	3
	P	0.2	0.07	0.24	0.26	0.13	0.1		
6.14	X	-3	-1	0	3	4	7	-2	6

	Р	0.12	0.09	0.01	0.2	0.28	0.3		
6.15	X	-1	0	1	3	7	8	2	6
-	P	0.26	0.14	0.15	0.2	0.3	0.15		
6.16	X	-2	-1	0	1	2	7	-3	5
-	P	0.17	0.09	0.01	0.3	0.23	0.2		
6.17	X	1	2	3	5	6	7	0	4
	P	0.1	0.14	0.16	0.1	0.2	0.3		
6.18	X	-3	-1	0	3	5	6	-2	4
-	P	0.16	0.09	0.01	0.3	0.24	0.2		
6.19	X	1	2	5	6	7	8	3	6
	P	0.2	0.15	0.15	0.1	0.3	0.1		
6.20	X	-1	0	2	4	7	8	1	5
	P	0.23	0.18	0.12	0.2	0.1	0.17		
6.21	X	1	2	4	5	6	8	0	7
	P	0.3	0.14	0.16	0.03	0.2	0.17		
6.22	X	-4	-3	-1	0	1	3	-2	2
	P	0.2	0.03	0.24	0.26	0.17	0.1		
6.23	X	1	2	3	4	7	9	0	8
	P	0.17	0.23	0.09	0.11	0.12	0.28		
6.24	X	0	1	3	5	7	8	2	6
	P	0.2	0.14	0.16	0.12	0.3	0.08		
6.25	X	-5	-3	-2	0	1	3	-4	2
	P	0.2	0.06	0.21	0.29	0.14	0.1		
6.26	X	1	2	3	5	8	9	4	7
	P	0.18	0.22	0.05	0.15	0.12	0.28		
6.27	X	1	3	4	5	7	8	2	6
	P	0.3	0.16	0.14	0.01	0.2	0.19		
6.28	X	-5	-3	-1	0	1	3	-4	2
	P	0.1	0.03	0.14	0.36	0.17	0.2		
6.29	X	0	2	3	4	6	8	1	7
	P	0.26	0.14	0.05	0.15	0.12	0.28		
6.30	X	-1	0	2	3	7	8	1	6
	P	0.21	0.16	0.14	0.1	0.2	0.19		

- 7. Для непрерывной случайной величины X, заданной функцией распределения, требуется найти:

 а) плотность распределения f(x);

 б) математическое ожидание, дисперсию, среднее квадратическое
- отклонение, моду, медиану; в) вероятность попадания X в интервал (a;b). Построить графики F(x) и
- f(x).

$N_{\underline{0}}$	F(x)	а	b	$\mathcal{N}\!$	F(x)	a	b
7.1		0	4	7.16		0	3
	$\begin{array}{c c} 0, & x \langle 0 \\ 1 & 2 \end{array}$				$\begin{cases} 0, & x < 0 \\ 1 \end{cases}$		
	$\begin{cases} \frac{1}{-x} & 3 \\ 1 & 8 \end{cases}, 0 \le x \le 2$				$\begin{cases} 1\\ -(x+1), & -1 \le x \le 4 \\ 15 \end{cases}$		
	$ 1, x \rangle 2$				1, x > 4		
7.2		1	2	7.17	(0 0	0	$\frac{\pi}{6}$
	$\begin{cases} \frac{1}{33} (2x^2 + 5x), & 0 \le x \le 3 \end{cases}$				$\begin{cases} 0, & x < 0 \\ \sin x & 0 \le x \le \frac{\pi}{2} / 2 \end{cases}$		6
	$\begin{bmatrix} 33 \\ 1, x>3 \end{bmatrix}$				$\begin{cases} \sin x, & 0 \le x \le \pi / 2 \\ 1, & x > / 2 \pi \end{cases}$		
7.3		0	1	7.18	$(1, x > 7 2\pi)$	0,2	0,9
1.5			1	7.10		0,2	0,7
	$\begin{cases} \frac{1}{2}x^2, & 0 \le x \le 3 \end{cases}$				$\left\{ (x^3 + 3x), 0 \le x \le 2 \right.$		
	$\begin{array}{c c} 9 \\ 1, & x > 3 \end{array}$				1, x > 2		
7.1	1, 1/3	0	1	7.10	`	1.5	
7.4		0	1	7.19		1,5	2
	$\begin{cases} \frac{1}{24} (2x^2 + 5x), & 0 \le x \le 4 \end{cases}$				$\begin{cases} (x^2 - x) / 2, & 1 \le x \le 2 \end{cases}$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
7.5	$\begin{cases} 0, & x < 0 \end{cases}$	0	1	7.20		0	1,5
	1				$ \begin{cases} 0, & x < 0 \\ 2 \end{cases} $		
	$\begin{cases} \frac{1}{10}(x^3 + x), & 0 \le x \le 2\\ 1, & x > 2 \end{cases}$				$\{(x^2 + x) / 6, 0 \le x \le 2\}$		
7.6	1, 1/2		2	7.01	1, x>2		1.5
7.6		0	3	7.21	[0, x < 0	1	1,5
	$\begin{cases} \frac{1}{20}(x^3+x), & 0 \le x \le 4 \end{cases}$				$\begin{cases} \frac{1}{10}(x^2 + 3x), & 0 \le x \le 2 \end{cases}$		
	$\begin{bmatrix} 20 \\ 1, & x > 4 \end{bmatrix}$				$\begin{vmatrix} 10 \\ 1, x > 2 \end{vmatrix}$		
7.7		3π	5 π	7.22		1,2	1,5
	0, exep x < 0	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$		$\begin{cases} 0, & x < 0 \\ \frac{1}{4}(x^2 - 2x), & 1 \le x \le 2 \end{cases}$	- ,-	- ,-
	$\begin{cases} \cos 2x, ezep & 3\pi / 4 \le x \le \pi \end{cases}$				$\begin{cases} \frac{1}{4}(x^2 - 2x), & 1 \le x \le 2 \end{cases}$		
	$1, ezep x > \pi$				1, x > 2		
7.0		0		7.22		1	
7.8		0	$\frac{\pi}{3}$	7.23	$\begin{cases} 0, & x < 2 \end{cases}$	1	3
	$\begin{cases} 1 - \cos x, & 0 \le x \le \pi / 2 \end{cases}$		3		$\begin{cases} 0, & x < 2 \\ \frac{1}{2}x - 1, & 2 \le x \le 4 \end{cases}$		
7.0		0	2	7.24	1, x > 4	12	5
7.9	$ \begin{cases} 0, & x < 0 \end{cases} $	0	2	7.24		2	5
	$\begin{cases} \frac{1}{96}(x^3 + 8x), & 0 \le x \le 4 \end{cases}$				$\begin{vmatrix} 1 \\ -x, & 0 \le x \le 6 \\ 6 \end{vmatrix}$		
	$\begin{bmatrix} 90 \\ 1, x > 4 \end{bmatrix}$						
					1, x > 6		

7.10		1	2	7.25		-0,5	0,2
	$ \begin{bmatrix} 0, & x < -1 \end{bmatrix} $				$\int_{-\infty}^{\infty} 0, x < -1$		
	$\begin{cases} \frac{1}{2}(x+1)^2, & -1 \le x \le 2 \end{cases}$				$\begin{cases} \frac{1}{2}x + \frac{1}{2}, & -1 \le x \le 1 \\ 2 & 2 \end{cases}$		
	1, x > 2				$\begin{vmatrix} 2 & 2 \\ 1, & x > 1 \end{vmatrix}$		
7 11			2	7.26	(1, 1/1	2.5	2.0
7.11	$\left(0, x < \pi / 2 \right)$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	7.26	(02	2,5	2,8
		2	4		$ \begin{cases} 0, & x < 2 \\ 2 \end{cases} $		
	$\begin{cases} 1 - \sin x, & \pi / 2 \le x \le \pi \end{cases}$				$\left\{ \left(x-2\right) ^{2},\ 2\leq x\leq 3\right.$		
	$1, x > \pi$				1, x > 3		
7.12		1	2	7.27		1,5	1,9
	$ \begin{pmatrix} 0, & x < -1 \end{pmatrix} $				$ \int 0, x < 1 $		
	$\begin{cases} \frac{1}{2}(x^3+1), & -1 \le x \le 2 \end{cases}$				$\begin{cases} \frac{1}{2}(x^2 - x), & 1 \le x \le 2 \end{cases}$		
	$\begin{bmatrix} 9 \\ 1, x>2 \end{bmatrix}$				$\begin{cases} 2 \\ 1, & x > 2 \end{cases}$		
7.13		0	2	7.28		$\frac{\pi}{}$	5 π
	$ \begin{cases} 0, & x < 0 \end{cases} $					2	6
	$\begin{cases} \frac{1}{33} (3x^2 + 2x), & 0 \le x \le 3 \end{cases}$				$\begin{cases} -\cos x, & \pi/2 \le x \le \pi \end{cases}$		
	$\begin{cases} 1, & x > 3 \end{cases}$						
7.14		3 π	$\frac{7\pi}{}$	7.29		2	4
	$\int 0, x < 3\pi/2$	2	4		$\int_{0}^{\infty} 0, x < 1$		
	$\begin{cases} \cos x, & 3\pi / 2 \le x \le 2\pi \end{cases}$				$\begin{cases} \frac{1}{4}(x-1), & 1 \le x \le 5 \\ \frac{1}{4} \end{cases}$		
	$1, x > 2 \pi$				$\begin{bmatrix} 4 \\ 1, x > 5 \end{bmatrix}$		
7.15		0	2	7.30		$\frac{\pi}{-}$	π
	$ \begin{cases} 0, & x < 0 \end{cases} $					3	$\frac{\pi}{2}$
	$\begin{cases} \frac{1}{15}(x^2+2x), & 0 \le x \le 3 \end{cases}$				$\begin{cases} 1 \\ -(1-\cos x), & 0 \le x \le \pi \end{cases}$		
	$\begin{bmatrix} 15 \\ 1, & x > 3 \end{bmatrix}$				$\begin{bmatrix} 2 \\ 1, & x > \pi \end{bmatrix}$		

- 8. Для случайной величины X, распределенной равномерно в отрезке [0;a], требуется найти:

 - а) плотность распределения f(x); б) функцию распределения F(x); в) математическое ожидание, дисперсию;

г) вероятность того, что X < m. Построить графики F(x) и f(x).

1) 50	1) Be bounded by 1010, 110 $X \times M$. Hot points 1 paper $X \times Y \times $										
№	а	m	$\mathcal{N}\!\underline{o}$	а	m	$\mathcal{N}\!$	а	m			
8.1	0,2	0,04	8.11	0,3	0,08	8.21	19	8			
8.2	0,3	0,02	8.12	0,6	0,01	8.22	20	5			
8.3	0,1	0,06	8.13	0,9	0,06	8.23	25	5			
8.4	0,5	0,01	8.14	0,5	0,05	8.24	9	3			
8.5	0,6	0,05	8.15	0,8	0,07	8.25	14	7			
8.6	0,9	0,02	8.16	5	3	8.26	18	9			
8.7	0,1	0,08	8.17	10	4	8.27	24	8			

8.8	0,7	0,01	8.18	15	5	8.28	6	3
8.9	0,4	0,06	8.19	6	2	8.29	12	6
810	0,5	0,07	8.20	20	10	8.30	16	8

- 9. Вероятность отказа одного элемента радиоаппаратуры, состоящей из N элементов, в течение одного года работы равна p и не зависит от состояния других элементов:
 - а) составить закон распределения числа отказавших элементов;
 - б) какова вероятность отказа не менее m элементов в год?

No	N	m	р		N	m	р
9.1	2000	4	0,001	9.16	1500	3	0,002
9.2	1000	5	0,007	9.17	2000	4	0,001
9.3	3000	7	0,004	9.18	1000	5	0,007
9.4	2000	5	0,002	9.19	3500	1	0,002
9.5	1000	6	0,005	9.20	2000	5	0,001
9.6	5000	2	0,001	9.21	1000	6	0,005
9.7	2000	4	0,001	9.22	4500	2	0,003
9.8	1500	5	0,008	9.23	2000	4	0,001
9.9	3500	7	0,004	9.24	1000	5	0,007
9.10	2000	2	0,003	9.25	3000	7	0,004
6.11	1500	6	0,005	9.26	2000	5	0,002
9.12	4000	2	0,006	9.27	1000	6	0,005
9.13	8000	2	0,001	9.28	6500	8	0,007
9.14	6500	6	0,002	9.29	7000	6	0,002
9.15	3000	2	0,005	9.30	5500	9	0,004

- 10. Для времени безотказной работы лампы (случайная величина T), подчиненного показательному распределению с параметром λ , где λ среднее число отказов лампы в единицу времени, требуется найти:
 - а) плотность распределения f(t);
 - б) функцию распределения F(t), указать её вероятностный смысл;
 - в) функцию надёжности R(t), указать её вероятностный смысл;
 - г) математическое ожидание, дисперсию;
- д) вероятность того, что за время t элемент откажет и вероятность того, что за время t элемент не откажет. Построить графики F(t), R(t) и f(t).

 $N_{\underline{0}}$ T_0 $N_{\underline{0}}$ T_0 $N_{\underline{0}}$ T_0 t t 5 5 8 10.1 2 10.11 3 10.21 1 10.2 3 10 10.12 4 4 10.22 2 10 3 10.3 4 10.13 10.23 3 6 6 6 10.4 6 8 10.14 7 2 10.24 4 8 10.5 7 10.15 8 10.25 4 4 1 6 8 9 10 7 3 10.6 10.16 10.26 9 10.7 10.17 10.27 10

10.8	10	1	10.18	1	7	10.28	9	1
10.9	1	10	10.19	2	8	10.29	10	7
10.10	2	6	10.20	3	2	10.30	1	9

- 11. Для случайной ошибки измерения (случайная величина X), подчиненной нормальному закону распределения с параметрами a и σ , требуется найти:
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
 - г) вероятность попадания в интервал (α ; β);

д) вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине δ . Построить графики F(t) и f(t).

		1					1				
	a	σ	α	β	δ		a	σ	α	β	δ
11.1	10	2	9	14	2	11.16	10	1	8	14	2
11.2	12	4	5	14	3	11.17	12	2	7	14	3
11.3	14	1	9	15	5	11.18	14	3	10	15	5
11.4	11	6	8	12	3	11.19	11	5	9	12	3
11.5	13	4	6	17	2	11.20	13	2	6	13	2
11.6	12	9	8	15	4	11.21	12	3	7	15	4
11.7	10	3	6	17	2	11.22	10	2	8	17	2
11.8	12	5	6	13	6	11.23	12	4	6	14	6
11.9	14	2	12	19	5	11.24	14	6	11	19	5
11.10	15	3	4	12	3	11.25	15	5	8	12	3
11.11	17	1	5	14	2	11.26	17	4	6	14	2
11.12	12	4	9	18	4	11.27	12	5	7	18	4
11.13	11	3	4	12	3	11.28	18	5	6	12	3
11.14	17	2	5	19	5	11.29	10	4	6	15	2
11.15	13	5	6	18	3	11.30	12	3	5	18	4

12. Дана матрица P_1 вероятности перехода цепи Маркова из состояния 1 в состояние 2 за один шаг. Найти матрицу перехода P_2 из состояния 1 в состояние 2 за два шага.

$\mathcal{N}\!$	P_{I}	$\mathcal{N}\!$	P_I	$\mathcal{N}\!$	P_1
12.1	(0,1 0,9)	12.11	(1/3 2/3)	12.21	(0,13 0,87)
	0,2 0,8		$\left(2/5 3/5\right)$		(0,2 0,8)
12.2	(0,2 0,8)	12.12	(2/8 6/8)	12.22	(0,22 0,78)
	0,3 0,7		$\left(3/5 2/5\right)$		0,3 0,7
12.3	(0,3 0,7)	12.13	(0,9 0,1)	12.23	(0,3 0,7)
	0,2 0,8		$\left(0,30,7\right)$		0,2 0,8

12.4	(0,4 0,6)	12.14	(0,45 0,55)	12.24	(0,4 0,6)
	$\begin{pmatrix} 0,5 & 0,5 \end{pmatrix}$		$\left[\begin{array}{cc}0,2&0,7\end{array}\right]$		0,15 0,85
12.5	(0,6 0,4)	12.15	(0,61 0,39)	12.25	(0,6 0,4)
	$\begin{bmatrix} 0,7 & 0,3 \end{bmatrix}$		0,2 0,8		0,71 0,29
12.6	(0,6 0,4)	12.16	(0,65 0,35)	12.26	(0,6 0,4)
	0,8 0,2		0,8 0,2		$\left(\begin{array}{cc}0.8&0.2\end{array}\right)$
12.7	(1/4 3/4)	12.17	(2/4 2/4)	12.27	(1/8 7/8)
	$\left(1/2 1/2\right)$		$\left(2/3 1/3\right)$		4/5 1/5
12.8	(2/3 1/3)	12.18	(2/3 1/3)	12.28	(3/8 5/8)
	4/5 1/5		4/7 3/7		4/5 1/5
12.9	(1/7 6/7)	12.19	(1/8 7/8)	12.29	(1/7 6/7)
	$\left(1/4 3/4\right)$		$\left(1/4 3/4\right)$		$\left(1/6 4/6\right)$
12.10	(0,1 0,9)	12.20	(0,15 0,85)	12.30	(0,1 0,9)
	$\left(0,30,7\right)$		0,3 0,7		0,33 0,67

1.3 Решение типового варианта

- 1. В коробке n=90 шаров, среди них m=30 синих, остальные белые. Найти:
 - а) относительную частоту синих шаров;
- б) вероятность того, что среди k=7 наугад взятых шаров будет $m_{_{\parallel}}$ =4 синих;
- в) вероятность того, что среди m наугад взятых шаров будет хотя бы один синий.

Решение:

а) относительной частотой события A (обозначается $P^*(A)$) называется отношение числа m испытаний, в которых событие A появилось, к общему числу n произведённых испытаний:

$$P^*(A) = m/n$$
;

$$P^*(A) = 30/90 = 1/3$$
.

В пунктах б) и в) используем классическое определение вероятности события A: P(A) = m/n, где m — число испытаний, благоприятствующих появлению события A, n — общее число испытаний;

б) пусть событие A - среди 7 наугад взятых шаров будет 4 синих. $n=C_{90}^7$; число m благоприятствующих событий получим, комбинируя каждое из C_{30}^4 сочетаний (C_{30}^4 равно числу различных способов выбрать 4 синих шаров из 30 синих шаров) с каждым из C_{60}^3 сочетаний (C_{60}^3 равно числу различных способов выбрать 3 не синих из 60 не синих шаров), т.е. $m=C_{30}^4 \cdot C_{60}^3$. Таким образом:

$$P(A) = m/n = C_{30}^4 \cdot C_{60}^3 / C_{90}^7 = 0,1256.$$

в) пусть событие A – среди 30 наугад взятых шаров будет хотя бы один синий, тогда противоположное событие \overline{A} - среди 30 наугад взятых шаров не будет ни одного синего. Вероятность этого события найдём по формуле:

$$P(\overline{A}) = m/n = C_{60}^{30}/C_{90}^{30} = 1.2 \times 10^{-4}$$
.

Тогда вероятность события A равна $P(A) = 1 - P(\overline{A}) = 1 - 1,2 \times 10^{-4} \approx 1$, т.е. это событие почти достоверное.

- 2. В цехе имеется три резервных электродвигателя. Для каждого из них вероятность того, что в данный момент он включен, соответственно равна p_1 =0,8, p_2 =0,3, p_3 =05. Найти вероятность того, что включены:
 - а) только один электродвигатель;
 - б) три электродвигателя;
 - в) хотя бы один электродвигатель.

Решение:

а) пусть событие A — из трех электродвигателей включен только один электродвигатель, A_i — включен i-ый электродвигатель. Тогда:

$$p(A) = p(A_1 \overline{A_2} \overline{A_3} + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3) = 0.8 \cdot 0.7 \cdot 0.5 + 0.2 \cdot 0.3 \cdot 0.5 + 0.2 \cdot 0.7 \cdot 0.5 = 0.38;$$

- б) пусть событие B— включены все три электродвигателя. Тогда: $p(B) = p(A_1 A_2 A_3) = 0.8 \cdot 0.3 \cdot 0.5 = 0.12;$
- в) пусть событие C из трех электродвигателей включен хотя бы один электродвигатель. рассмотрим противоположное событие \overline{C} не включен ни один электродвигатель, т.е. $\overline{C} = \overline{A_1} \overline{A_2} \overline{A_3}$, то $P(C) = 1 P(\overline{C}) = 1 P(\overline{A_1} \overline{A_2} \overline{A_3}) = 1 0.2 \cdot 0.7 \cdot 0.5 = 0.93$.
- 3. Вероятность успешной сдачи студентом каждого из пяти экзаменов равна p=0,7. Найти вероятность успешной сдачи:
 - а) трех экзаменов;
 - б) менее двух экзаменов;
 - в) не менее трех экзаменов.

Решение: для определения вероятности события A используем формулу Бернулли:

$$P_{n}(k) = C_{n}^{k} p^{k} q^{n-k},$$

где $P_{_n}(k)$ - вероятность появления k раз (k=0,1,2,...n) некоторого события в серии n независимых испытаний, q=1-p.

Вероятности событий B и C определяются как суммы вероятностей: $P_n(k) + P_n(k+1) + \dots + P_n(n)$ - вероятность того, что событие произойдёт не менее, чем k раз в n независимых испытаниях, т.е. или k, или $k+1,\dots$, или n раз; $P_n(0) + P_n(1) + \dots + P_n(k)$ - вероятность того, что событие произойдёт не более k раз в n независимых испытаниях, т.е. или 0, или 1, или $2,\dots$, или k

раз. Эти вероятности называют комулятивными (накопленными). Таким образом:

a)
$$P(A) = P_5(3) = C_5^3 \cdot 0.7^3 \cdot 0.3^2 = 0.3087;$$

$$6) P(B) = P_5(1) + P_5(0) = 0.0054;$$

B)
$$P(C) = P_5(3) + P_5(4) + P_5(5) = 0.5129$$
.

4. Промышленное оборудование состоит из n=3000 транзисторов. Вероятность выхода из строя одного транзистора равна p=0,002. Найти вероятность выхода из строя k=8 транзисторов.

Решение: поскольку n велико, p мало, а произведение $\lambda = n \cdot p$ - небольшое число, то вместо формулы Бернулли для определения вероятности $P_n(k)$ появления k раз некоторого события в серии n независимых испытаний правильнее использовать формулу Пуассона:

$$P_{n}(k) \approx \lambda^{k} \cdot e^{-\lambda} / k!$$

В нашей задаче $n=3000,\ k=8,\ p=0,002,\ \lambda=3000\cdot 0,002=6$, поэтому P_{3000} (8) = 6 8 · e^{-6} / 8!=0,1033.

- 5. Вероятность наступления события A в каждом испытании равна p=0,8. Найти вероятность наступления события A при n =100 испытании:
 - а) ровно 80 раз (событие A);
 - б) более 80 раз (событие B).

Решение: поскольку число независимых испытаний n велико, то вероятность $P_{n}(k)$ появления k раз некоторого события в n испытаниях определяется по локальной теореме Муавра-Лапласа и приближённо равна:

$$P_{n}(k) \cong \frac{1}{\sqrt{npq}} \varphi(x),$$
 где $x = \frac{k - np}{\sqrt{npq}}$, $0 , $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^{2}/2)$.$

Для определения вероятности события B используют интегральную теорему Муавра-Лапласа: вероятность $P_{_n}(k_{_1},k_{_2})$ того, что число k появления некоторого события будет находиться в промежутке от $k_{_1}$ до $k_{_2}$ приближённо равна:

$$P_{_{n}}\left(k_{_{1}},k_{_{2}}\right)\approx\Phi\left(x_{_{2}}\right)-\Phi\left(x_{_{1}}\right),$$
 ГДе $x_{_{2}}=\frac{k_{_{2}}-np}{\sqrt{npq}}, \quad x_{_{1}}=\frac{k_{_{1}}-np}{\sqrt{npq}}, \quad \Phi\left(x\right)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}\exp(-t^{_{2}}/2)dt \quad -\quad \mbox{функция}$

Лапласа, значения которой находятся из специальных таблиц.

a)
$$x = \frac{80 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = 0$$
, $P_{100}(80) \approx \frac{1}{\sqrt{100 \cdot 0.8 \cdot 0.2}} \varphi(0) = 0.399 / 4 = 0.09975$;

6. Для дискретной случайной величины X, заданной рядом распределения, требуется найти:

- а) функцию распределения F(x), построить график F(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;
 - в) вероятность попадания X в интервал (15;45).

Решение:

а) функция распределения F(x) (интегральная функция распределения) случайной величины X определяет вероятность события X < x. Для дискретной случайной величины она находится по формуле:

$$F(x) = P(X < x) = \sum_{x_i < x} p_i = \sum_{x_i < x} P(X = x_i),$$

где суммирование ведётся по всем i, для которых $x_i < x$.

Итак

- 1) Если $x \le 0$, то F(x) = P(X < 0) = 0.
- 2) Если $0 < x \le 10$, то F(x) = P(X = 0) = 0.05.
- 3) Если $10 < x \le 20$, то F(x) = P(X = 0) + P(X = 10) = 0.05 + 0.15 = 0.2.
- 4) Если 20 $< x \le 30$, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) = 0.5.
- 5) Если $30 < x \le 40$, то

$$F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) = 0.5 + 0.25 = 0.75$$
.

6) Если $40 < x \le 50$, то

$$F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) + P(X = 40) = 0.95$$
.

7) Если x > 50, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) + P(X = 40) + P(X = 50) = 0.95 + 0.05 = 1.

$$\begin{cases} 0, \ \textit{если} \quad x \leq 0 \\ 0,05, \ \textit{если} \quad 0 < x \leq 10 \\ 0,2, \ \textit{если} \quad 10 < x \leq 20 \\ 0,5, \ \textit{если} \quad 20 < x \leq 30 \\ 0,75, \ \textit{если} \quad 30 < x \leq 40 \\ 0,95, \ \textit{если} \quad 40 < x \leq 50 \\ 1, \ \textit{если} \quad x > 50 \end{cases}$$

б) найдём числовые характеристики. Для дискретной случайной величины математическое ожидание равно сумме произведений всех её возможных значений на вероятности этих значений:

$$M(X) = \sum_{i} x_{i} p_{i}.$$

Поэтому

$$M(X) = 0.0,15 + 10.0,15 + 20.0,3 + 30.0,25 + 40.0,2 + 50.0,05 = 25,5.$$

Дисперсия случайной величины X находится либо по формуле $D(X) = M[X - M(X)]^2$, либо по формуле $D(X) = M(X^2) - [M(X)]^2$. Для дискретной случайной величины эти формулы перепишутся так:

$$D(X) = \sum_{i} (x_{i} - M(X))^{2} \cdot p_{i}$$
 ИЛИ $D(X) = \sum_{i} x_{i}^{2} p_{i} - (\sum_{i} x_{i} p_{i})^{2}$.

Среднее квадратическое отклонение равно $\sigma(x) = \sqrt{D(x)}$; мода дискретной случайной величины (обозначается $M_{_0}$) — это её значение, принимаемое с наибольшей вероятностью; вероятность попадания X в интервал (a;b) находится по формуле P(a;b) = F(b) - F(a). В нашей задаче эти величины равны:

$$D(x)=154,75$$
; $\sigma(x) = \sqrt{154,75} = 12,44$; $M_0 = 20$; $P(15;45) = F(45) - F(15) = 0,75$.

7. Для непрерывной случайной величины X, заданной функцией распределения $F(x) = \begin{cases} 0, \ ecnu \ x < 2 \\ (x-2)^2, \ ecnu \ 2 \le x \le 3 \end{cases}$, требуется найти: $1, \ ecnu \ x > 3$

- а) плотность распределения f(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду, медиану;
- в) вероятность попадания X в интервал (1; 2,5). Построить графики F(x) и f(x).

Решение:

а) плотность распределения вероятностей непрерывной случайной величины равна производной её функции распределения:

$$f(x) = F'(x)$$
, ПОЭТОМУ $f(x) = F'(x) = \begin{cases} 0, ecnu & x < 2 \\ 2(x-2), ecnu & 2 \le x \le 3 \end{cases}$, $0, ecnu & x > 3$

б) числовые характеристики непрерывных случайных величин находятся по формулам:

— математическое ожидание:
$$M(x) = \int_{-\infty(a)}^{\infty(b)} xf(x)dx$$
;

— дисперсия: $D(x) = \int_{-\infty(a)}^{\infty(b)} (x - M(x))^2 f(x)dx$

или

$$D(x) = \int_{-\infty(a)}^{\infty(b)} x^2 f(x) dx - \left[M(x)\right]^2$$

(пределы интегрирования зависят от того, принадлежат ли возможные значения случайной величины всей оси Ox или интервалу (a;b)); среднее квадратическое отклонение - $\sigma(x) = \sqrt{D(x)}$; модой непрерывной случайной величины x называется то её значение M_o , при котором плотность распределения максимальна; медианой непрерывной случайной величины x называется такое её значение x0, для которого одинаково вероятно,

окажется ли случайная величина меньше или больше M_{\perp} , т.е. $P(X < M_{\alpha}) = P(X > M_{\alpha}) = 0.5.$

образом, в нашей задаче $M(x) = \int_{3}^{3} 2x(x-2) = 8/3;$ Таким $D(x) = \int_{0}^{3} x^{2} \cdot 2(x-2) dx - (8/3)^{2} = 1/18$; $\sigma(X) = \sqrt{1/18} = 0.236$. Для определения моды надо найти максимум функции f(x) = 2(x-2) на отрезке [2; 3]. Поскольку эта функция монотонна, то её максимум достигается на конце отрезка, т.е. $f_{\text{max}} = f(3) = 2$. Итак, $M_{\text{a}} = 3$. Медиану можно найти из условия вероятность $P(X < M_{e}) = P(-\infty < X < M_{e}) =$ $P(X < M_{*}) = 0.5$ $P(2 < X < M_{*})$ находится по формуле:

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

 $P(a < X < b) = \int\limits_a^b f(x) dx \,.$ Так как $P(2 < X < M_e) = \int\limits_2^{M_e} 2(x-2) dx = (M_e-2)^2$, то, решая уравнение $(M_{_{e}}-2)^{^{2}}=0,5$, получим два корня 1,29 и 2,71, из которых подходит один: M = 2,71;

в) Вероятность попадания случайной величины в промежуток (а; b) вычисляется по формуле:

$$P(a < X < b) = F(b) - F(a)$$
.

Вычисляем вероятность попадания X в интервал (1; 2,5) по этой формуле:

$$P(1 < X < 2.5) = F(2.5) - F(1) = (2.5 - 2)^{2} - 0 = 0.25$$
.

- 8. Для случайной величины X, распределенной равномерно в отрезке [0;0,5], требуется найти:
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
 - г) вероятность того, что X < 0.3. Построить графики F(x) и f(x).

Решение: случайная величина Х распределена равномерно между двумя целыми делениями; b - a = 0.5 — длина интервала, в котором заключены возможные значения X.

Плотность равномерного распределения находится по формуле:

$$f(x) = \begin{cases} \frac{1}{b-a}, & ecnu \quad x \in (a,b) \\ 0, & ecnu \quad x \notin (a,b) \end{cases},$$

— функция распределения:
$$F(x) = \begin{cases} 0, & \textit{если} \quad x \leq a \\ \frac{x-a}{b-a}, & \textit{если} \quad a < x \leq b \end{cases}$$
;

— математическое ожидание:
$$M(X) = \frac{a+b}{2}$$
,

-дисперсия:
$$D(X) = \frac{(b-a)^2}{12}$$
;

— вероятность попадания в интервал (α, β) : $P(\alpha < X < \beta) = \frac{\beta - \alpha}{b - a}$.

Поэтому в нашей задаче:

a)
$$f(x) = \begin{cases} \frac{1}{0.5} = 2, & ecnu \quad x \in (0; 0.5) \\ 0, & ecnu \quad x \notin (0; 0.5) \end{cases}$$
;

$$6) F(x) = \begin{cases} 0, & ecnu \ x \le 0 \\ \frac{x}{0.5} = 2x, & ecnu \ 0 < x \le 0.5; \\ 1, & ecnu \ x > 0.5 \end{cases}$$

B)
$$M(X) = \frac{0.5 + 0}{2} = 0.25$$
; $D(X) = \frac{(0.5 - 0)^2}{12} = 0.0209$;

$$\Gamma$$
) $P(0 < X < 0.03) = F(0.03) - F(0) = \frac{0.03 - 0}{0.5} = 0.6$.

- 9. Вероятность отказа одного элемента радиоаппаратуры, состоящей из N = 1000 элементов, в течение одного года работы p = 0,001 и не зависит от состояния других элементов:
 - а) составить закон распределения числа отказавших элементов;
 - б) какова вероятность отказа не менее m=2 элементов в год?

Решение: а) дискретная случайная величина X — число отказавших элементов распределена по закону Пуассона (предельный для биномиального закон распределения, когда вероятность p появления события в каждом испытании мала, а число n проводимых испытаний велико):

$$P(X = k) = P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

где $\lambda = np = 1000 \cdot 0.001 = 1$, k = 0.1, 2, ..., 1000, n = 1000.

Таким образом, $P(X = 0) = P_{1000}(0) \approx \frac{1}{0!} e^{-1} = 0.368;$

$$P(X = 1) = P_{1000}(1) \approx \frac{1^{0}}{1!}e^{-1} = 0.368; \ P(X = 2) = P_{1000}(2) \approx \frac{1^{2}}{2!}e^{-1} = 0.184;$$

$$P(X = 3) = P_{1000}(3) \approx \frac{1^{3}}{3!}e^{-1}0,061, \text{ и т.д.}$$

$$P(X=10) = P_{1000} (10) \approx \frac{1^{10}}{10!} e^{-1} = 0,0000001$$
и т.д.

Искомый закон распределения:

X	0	1	2	3		10	• • •
p	0,368	0,368	0,184	0,061	•••	0,0000001	•••

б) вероятность отказа не менее двух элементов вычисляется по формуле:

$$P(X \ge 2) = \sum_{k=2}^{\infty} P_{1000}(k)$$

ИЛИ

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - 0.368 - 0.368 = 0.264.$$

- 10. Для времени безотказной работы лампы (случайная величина T), подчиненного показательному распределению с параметром $\lambda = 0.5$, где λ среднее число отказов лампы в единицу времени, требуется найти:
 - а) плотность распределения f(t);
 - б) функцию распределения F(t), указать её вероятностный смысл;
 - в) функцию надёжности R(t), указать её вероятностный смысл;
 - г) математическое ожидание, дисперсию;
- д) вероятность того, что за время t элемент откажет и вероятность того, что за время t элемент не откажет. Построить графики F(t), R(t) и f(t).

Решение: показательным называют закон распределения непрерывной случайной величины X с плотностью $f(x) = \begin{cases} 0, ecnu & x < 0 \\ \lambda e^{-\lambda x}, ecnu & x \geq 0 \end{cases}$. Другие понятия и формулы для показательного распределения: $F(x) = \begin{cases} 0, ecnu & x < 0 \\ 1 - e^{-\lambda x}, ecnu & x \geq 0 \end{cases}$ - функция

распределения; если случайная величина X=T — время безотказной работы элемента, то $F(t) = P(T < t) = 1 - e^{-\lambda t}$ определяет вероятность отказа элемента за время t; $R(t) = P(T > t) = e^{-\lambda t}$ — функция надёжности, определяет вероятность безотказной работы элемента за время t:

$$M(X) = \frac{1}{\lambda}, D(X) = \frac{1}{\lambda^2}, \sigma(X) = \frac{1}{\lambda}; P(\alpha < X < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta}.$$

В нашей задаче, учитывая то, что $t \ge 0$, имеем:

- a) $f(t) = 0.5e^{-0.5t}$;
- б) $F(t) = P(T < t) = 1 e^{-0.5t}$, определяет вероятность отказа элемента за время t;

в) $R(t) = e^{-0.5t}$, определяет вероятность безотказной работы элемента за время t;

$$\Gamma$$
) $M(X) = \frac{1}{0.5} = 2$; $D(X) = \frac{1}{0.5^2} = 4$;

- д) поскольку функция распределения определяет вероятность отказа за время t, то, подставив в неё t=5, получим вероятность отказа за время t=5ч: $F(5) = 1 e^{-0.5.5} = 1 e^{-2.5} = 0.918$; события «элемент откажет» и «элемент не откажет» противоположные, поэтому вероятность безотказной работы элемента за время t=5 равна 1-0,918=0,082. Этот же результат можно получить непосредственно, пользуясь функцией надёжности: $R(5) = e^{-0.5.5} = e^{-2.5} = 0,082$.
- 11. Для случайной ошибки измерения (случайная величина X), подчиненной нормальному закону распределения с параметрами a=10 и σ =2, требуется найти:
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
 - г) вероятность попадания в интервал $(\alpha; \beta)$;
- д) вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине $\delta = 3$. Построить графики F(t) и f(t).

Решение: нормальным называют закон распределения непрерывной случайной величины X с плотностью:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}},$$

где a=M(X) — математическое ожидание, $\sigma = \sigma(X)$ — среднее квадратическое отклонение X.

Другие понятия и формулы для нормального распределения:

— функция распределения:
$$F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} \exp \left[\frac{-(t-a)^{2}}{2\sigma^{2}} \right] dt$$

или

$$F(x) = \Phi\left(\frac{x-a}{\sigma}\right) + 0.5,$$

где $\Phi(x) = \frac{1}{\sqrt{2\sigma}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$ — функция Лапласа, её значения табулированы;

— вероятность попадания в интервал $(\alpha; \beta)$:

$$P(\alpha < X < \beta) = F(\beta) - F(\alpha) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right),$$

— вероятность того, что случайная величина отклонится от своего математического ожидания не более чем на δ :

$$P(|X - a| \le \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right).$$

В нашей задаче:

a)
$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-10)^2}{8}}$$
;

$$6) F(x) = \Phi\left(\frac{x - 10}{2}\right) + 0.5;$$

B)
$$M(X) = a = 10$$
, $\sigma(X) = \sigma = 2$, $D(X) = \sigma^2 = 4$;

$$\Gamma$$
) $P(12 < X < 14) = \Phi\left(\frac{14 - 10}{2}\right) - \Phi\left(\frac{12 - 10}{2}\right) = \Phi(2) - \Phi(1) = 0,4772$

0,3413=0,1359;

д) вероятность того, что измерение произведено с ошибкой, не превосходящей по абсолютной величине $\delta = 3$, будет равна:

$$P(|X - 10| \le 3) = 2\Phi\left(\frac{3}{2}\right) = 2\Phi(1,5) = 0,4332.$$

Здесь значения функции Лапласа взяты из таблицы.

12. Задана матрица
$$P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$$
 вероятности перехода цепи

Маркова из состояния 1 в состояние 2 за один шаг. Найти матрицу вероятностей переходов P_2 из состояния 1 в состояние 2 за два шага.

Решение:

По формуле $P(n)=P^n$ находим:

$$P_{2} = P^{2} = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix} \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix} \begin{bmatrix} 0.38 & 0.27 & 0.35 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix} \begin{bmatrix} 0.38 & 0.27 & 0.35 \\ 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$$

2 Расчётно-графическая работа №2. Случайные многомерные величины

Цели: ознакомиться с понятием многомерной случайной величины, двумерной случайной величины, ее функцией распределения и плотностью распределения. числовыми характеристиками, а также точечными и интервальными оценками параметров.

2.1 Теоретические вопросы

1. Понятие многомерной случайной величины и закон ее распределения. Двумерная случайная величина, ее плотность вероятности. Числовые характеристики двумерной случайной величины.

- 2. Эмпирическая функция распределения, полигон, гистограмма.
- 3. Точечные оценки параметров распределения.
- 4. Интервальные оценки параметров распределения. Доверительный интервал.
- 5. Линейная корреляция. Коэффициент корреляции. Функции и линии регрессии.

2.2 Расчётные задания

- 1. Значения признаков X и Y заданы корреляционной таблицей. Требуется найти:
 - а) выборочные средние каждого из признаков x_6 , y_6 ;
 - б) их среднеквадратичные отклонения sx, sy;
 - в) коэффициент линейной корреляции r_{xy} ;
 - Γ) уравнения прямых регрессий y на x и x на y.

Таблица 1.1

X	12	17	22	27	32	37
105	3	4				
110		6	3			
115			6	35	2	
120			8	12	6	
125				4	7	4

Таблица 1.2

Y	14	17	20	25	33	37
100	3	6				
110		4	3			
120			8	35	2	
130			6	12	6	
140				4	7	4

Таблица 1.3

X	22	27	32	37	42	47
Y						
5	3	4				
10		6	3			
15			6	35	7	
20			8	12	2	
25				4	6	4

Y	2	7	12	17	22	28
95	3	4				
100		6	3			
105			6	35	2	
110			8	12	6	
115				4	7	4

Таблица 1.5

Y	9	20	31	42	53	64
2,2	4	1				
3,0		6	4			
3,8			2	50	2	
4,6			1	9	7	
5,4				4	3	7

Таблица 1.6

- was									
Y	21	31	41	51	61	71			
3,6	3	2							
4,9		6	3						
6,2			4	45	5				
7,5			2	11	4				
8,8				4	7	3			

Таблица 1.7

Y	15	22	29	36	43	50
2,9	1	5				
4,0		6	3			
5,1			7	43	5	
6,2			2	8	6	
7,3				5	6	3

Y	9	13	17	21	25	29
11	1	5				
18		3	5			
25			9	40	2	

32		4	11	6	
39			4	7	3

Y	6	1	16	21	26	31
9	4	2				
51		5	3			
21			5	45	5	
27			2	8	7	
33				4	7	3

Таблица 1.10

X	10	14	18	22	26	30
	10				20	20
Y						
		_				
10	5	1				
15		6	2			
20			5	40	5	
25			2	8	7	
30				4	7	8

Таблица 1.11

Y	3	11	19	27	35	43
100	2	4				
115		3	7			
130			5	30	10	
145			7	10	8	
160				5	6	3

X	2	8	14	20	26
Y					
110	3	5			
120		4	4		
130			7	34	9
140			1	11	8
150				6	5

X	7	10	13	16	19	22
Y						
80	3	3				
90		5	4			
100			40	2	8	
110			5	10	6	
120				4	7	3

Таблица 1.14

X	20	25	30	35	40	45
Y						
1,6	3	2				
2,9		6	3			
4,2			4	5	10	
6,8			2	11	4	
8,2				4	7	3

Таблица 1.15

X	18	25	32	39	46	53
Υ						
2,8	1	5				
3,8		3	5			
5,0			7	3	5	
6,2				3	5	6

Таблица 1.16

V	Q	12	15	18	21	24
Y	7	12	13	10	21	24
2,4	5	2				
3,0		7	5			
3,8			2	5	2	
4,6			1	9	7	
5,2				3	2	6

X	7	11	15	19	23	27
10	1	5				
17		3	5			
24			9	40	2	
31				4	7	3

Y	16	21	26	31	36	41
8	4	2				
14		5	3			
20			5	45	5	
26				4	7	3
32				2	8	7

Таблица 1.19

X	5	8	11	16	20	25
Y						
10	2	5				
20		3	8			
30			4	8	45	
40				2	7	3

Таблица 1.20

	1 иолица 1.20							
X	13	17	21	25	29	33		
Y								
8	6	4	12					
10		8	10	12				
12			2	4	46			
14					2	3		

Таблица 1.21

X	-3	0	3	6	12	15
Y						
7,8	1	3	7			
8,1		3	9	11		
8,4			2	7	34	
8,9					2	5

Y	77	80	84	89	92	98
2	1	4	8			
3,5		2	6	34		
5			9	12	45	
6,9					2	7
7,5						3

Y	3	7	12	18	20	25
3	7	15	7			
10		4	6	15		
15			3	10	35	
20					3	7

Таблица 1.24

_	100	120	140	155	165	180
5	1	5	7			
8		4	9	16		
12			8	5	45	
16					2	8

Таблица 1.25

X	55	65	75	85	95	105
Y						
4	1	5	8			
8		4	8	10		
12				1	50	4
16						16

Таблица 1.26

X	2	6	10	15	18	21
12	1	3	5			
16		4	6	15		
20			2	12	35	
24					2	4

Таблица 1.27

Y	104	106	108	110	112	116
X						
10	4	5	6			
20		7	19	25		
30			1	5	45	
40					5	12

45	55	65	75	85	90

X						
10	3	5	9			
15		4	6	10		
20			1	21	50	
25					1	25

X	12	16	18	25	27	31
7	4	8	6			
14		2	6	12		
21			3	12	40	
28					5	10

	42	46	50	54	58	62
Y						
14	1	5	6			
18		4	7	9		
28			1	2	41	
32					4	10

- 2. Дан статистический ряд:
- а) составить вариационный ряд;
- б) интервальный статистический ряд (минимальную и максимальную варианты, размах варьирования, эмпирические частоты интервалов);
- в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
- г) найти выборочную среднюю, выборочную и исправленную выборочную дисперсии;
 - д) исправленное выборочное среднеквадратическое отклонение;
 - е) выборочные моду и медиану;
 - ж) выборочные начальные моменты третьего и четвертого порядков;
 - и) выборочный эксцесс;
 - к) коэффициент асимметрии.

,	2.1.								
17,1	21,4	15,9	19,1	22,4	20,7	17,9	18,6	21,8	16,1
19,1	20,5	14,2	16,9	17,8	18,1	19,1	15,8	18,8	17,2
16,2	17,3	22,5	19,9	21,1	15,1	17,7	19,8	14,9	20,5
17,5	19,2	18,5	15,7	14,0	18,6	21,2	16,8	19,3	17,8
18,8	14,3	17,1	19,5	16,3	20,3	17,9	23,0	17,2	15,2

15,6	17,4	21,3	22,1	20,1	14,5	19,3	18,4	16,7	18,2
16,4	18,7	14,3	18,2	19,1	15,3	21,5	17,2	22,6	20,4
22,8	17,5	20,2	15,5	21,6	18,1	20,5	14,0	18,9	16,5
20,8	16,6	18,3	21,7	17,4	23,0	21,1	19,8	15,4	18,1
18,9	14,7	19,5	20,9	15,8	20,2	21,8	18,2	21,2	20,1
,	2.2.								
16,8	17,9	21,4	14,1	19,1	18,1	15,1	18,2	20,3	16,7
19,5	18,5	22,5	18,4	16,2	18,3	19,1	21,4	14,5	16,1
21,5	14,9	18,6	20,4	15,2	18,5	17,1	22,4	20,8	19,8
17,2	19,7	16,3	18,7	14,4	18,8	19,5	21,6	15,3	17,3
22,8	17,4	22,3	16,5	21,7	15,4	21,3	14,3	20,5	16,4
20,6	15,5	19,4	17,5	20,9	23,0	18,9	15,9	18,2	20,7
17,9	21,8	14,2	21,2	16,1	18,4	17,5	19,3	22,7	19,6
22,1	17,6	16,7	20,4	15,7	18,1	16,6	18,3	15,5	17,7
19,2	14,8	19,7	17,7	16,5	17,8	18,5	14,0	21,9	16,9
15,8	20,8	17,1	20,1	22,6	18,9	15,6	21,2	20,2	15,1
,	2.3.								
189	207	213	208	186	210	198	219	231	227
202	211	220	236	227	220	210	183	213	190
197	227	187	226	213	191	209	196	202	235
211	214	220	195	182	228	202	207	192	226
193	203	232	202	215	195	220	233	214	185
234	215	196	220	203	236	225	221	193	215
204	184	2174	193	216	205	197	203	229	204
225	216	233	223	208	204	207	182	216	191
210	190	207	205	232	222	198	217	211	201
185	217	225	201	208	211	189	205	207	199
/	2.4.								
9,4	7,9	0,3	6,8	4,2	11,9	7,8	1,7	5,1	8,8
8,7	11,1	7,7	1,8	5,5	10,5	4,3	3,8	1,4	11,2
1,1	7,3	3,7	4,4	11,8	8,6	1,9	5,6	10,1	8,4
10,0	11,6	5,2	2,1	5,7	4,8	7,4	0,8	4,7	3,6
8,3	7,6	0,7	7,3	3,41	11,4	5,7	9,9	2,2	7,2
2,3	4,7	9,7	11,3	5,8	4,9	3,3	0,5	7,5	4,6
5,0	0,4	8,9	7,1	9,6	11,5	5,9	9,0	5,3	2,4
9,25	5,9	1,0	9,1	2,5	6,0	8,2	3,2	10,9	6,1
10,2	2,6	4,25	3,1	6,2	11,7	6,3	0,2	7,0	9,2
1,2	6,4	11,9	6,9	8,1	6,5	2,9	6,2	4,4	10,3
,	2.5.								
1,6	4,4	10,9	6,4	4,0	2,8	5,2	1,2	7,6	3,4

2,9	5,3	1,7	7,7	6,9	10,1	5,4	4,1	8,8	6,5
6,6	4,2	5,5	0,5	8,9	4,5	1,8	5,6	7,8	3,0
1,9	10,2	7,9	2,5	5,7	3,1	6,7	4,3	0,6	9,0
6,8	3,2	4,4	9,1	10,3	6,0	7,9	4 ,3	8,0	2,0
7,0	10,7	8,1	2,1	5,8	6,4	0,3	4,5	9,2	3,3
7,6	9,3	3,4	4,6	5,0	3,8	5,9	8,2	2,2	7,1
2,3	0,8	7,2	8,3	11,1	6,5	3,5	9,4	10,8	4,7
4,8	6,1	3,6	9,5	8,4	2,4	6,2	7,3	5,7	0,9
7,4	8,5	5,8	1,1	5,9	2,4 4,9	3,7	7,5 9,6	2,6	6,1
7,4	0,5	3,0	1,1	3,9	4,5	3,7	9,0	2,0	0,1
	2.6.								
20	26	32	34	26	28	22	30	17	24
30	28	18	22	24	26	34	28	22	20
34	24	28	20	32	17	22	24	26	30
30	22	26	35	28	24	30	32	28	18
20	30	17	24	32	28	22	26	24	30
34	26	24	28	22	30	35	32	20	17
28	22	36	30	20	26	28	23	24	32
20	26	30	24	32	17	22	28	35	26
28	35	32	22	26	24	26	24	30	24
18	24	26	28	35	30	26	22	26	28
	2.7.								
57	46	33	49	29	50	38	41	27	34
37	49	51	26	55	42	59	43	46	30
31	43	58	41	35	47	33	45	49	37
47	34	54	39	60	49	25	50	31	53
38	41	30	51	37	55	47	43	35	42
35	46	27	45	41	34	50	29	51	39
42	59	43	31	38	58	54	37	26	43
29	42	33	41	24	39	53	45	3,3	51
45	25	54	50	37	30	41	60	42	46
38	53	34	47	35	49	57	39	55	31
	2.0								
27	2.8.	42	21	4.4	20	40	21	20	12
37	49	43	31	44	38	40	31	28	43
32	44	47	29	51	25	43	38	41	32
38	24	49 42	40	32	34	31	28	37	46 50
41	35	43	25	37	46	38	24	41	50
38	29	41	32	34	49	44	37	31	47
50	34	25	37 25	40	32	35	28	44	43
46	37	41	35	29	43	38	31	26	34
49	32	46	26	38	35	40	51	37	46
37	25	40	34	24	44	32	28	34	38

44	34	29	47	37	49	43	35	47	50
,	2.9.								
70	95	75	85	60	77	55	63	80	67
90	78	57	76	84	82	75	68	73	62
62	81	77	72	97	68	85	56	92	71
73	78	98	63	83	85	70	90	66	91
86	68	55 70	93	71	96 97	77	81	86	72
82	62 50	70	78	67 75	87	91 71	99	78	87
91	58	81	97	75	83	71	66 75	61	76
73	85 50	65	90	86	61	54	75	78 7.6	93
87	58	72	92 55	66	98	65	81	76	63
95	83	65	57	80	87	61	92	56	71
,	2.10.								
57,3	75,1	78,1	69,3	60,1	77,3	66,1	69,5	72,1	68,7
81,1	69,4	63,1	67,4	77,1	82,6	64,8	72,5	62,5	80,7
77,6	65,8	78,3	57,7	80,7	64,4	82,8	67,3	83,1	70,6
75,3	58,0	60,7	81,3	67,1	69,6	82,4	62,3	66,9	80,6
62,7	73,8	68,9	83,8	57,0	72,6	65,6	78,7	59,5	70,0
73,5	58,1	64,0	83,9	84,0	63,5	74,1	77,7	68,5	80,5
66,3	73,0	79,1	71,1	80,4	62,1	66,7	83,7	76,8	59,3
71,3	63,7	71,2	78,96	65,2	77,9	74,9	69,1	70,8	74,8
71,6	72,9	61,9	71,5	75,4	71,7	59,9	74,3	76,1	70,9
61,3	71,4	71,8	65,0	67,8	75,5	71,9	64,9	74,7	62,9
		,	,	•	,	,	,	,	ŕ
	2.11.								
181	141	162	103	136	124	41	117	69	153
101	24	67	154	172	110	62	59	197	121
135	58	199	159	81	39	142	87	179	85
171	107	125	192	163	200	133	150	178	98
148	56	113	169	73	138	104	31	90	109
127	116	190	20	111	94	57	119	53	76
66	132	166	9	44	115	72	26	128	149
46	75	105	137	82	64	186	96	176	97
156	33	188	58	112	139	86	174	106	77
152	130	43	108	119	129	37	71	96	114
,	2.12.								
32	105	48	80	144	128	64	112	18	81
66	129	113	17	94	78	90	51	104	34
110	149	36	103	82	53	93	130	68	150
114	84	55	131	70	38	102	77	16	135
41	19	142	61	85	159	115	57	72	101
T1	1/	174	O1	$o_{\mathcal{J}}$	137	11 J	JI	1 4	101

2.13. 0.053 0.026 0.037 0.056 0.041 0.035 0.031 0.046 0.021 0.054 0.035 0.039 0.043 0.031 0.038 0.023 0.045 0.026 0.037 0.042 0.030 0.041 0.021 0.047 0.026 0.046 0.033 0.038 0.043 0.026 0.039 0.033 0.020 0.042 0.055 0.037 0.041 0.029 0.029 0.038 0.027 0.043 0.035 0.030 0.049 0.055 0.037 0.041 0.022 0.029 0.038 0.027 0.043 0.035 0.030 0.049 0.055 0.039 0.034 0.021 0.045 0.034 0.055 0.037 0.025 0.033 0.051 0.027 0.046 0.025 0.047 0.030 0.050 0.023 0.039 0.035 0.049 0.030 0.031 0.026 0.034 <th>56 151 17 35 96</th> <th>1</th> <th>100 71 124 158 121</th> <th>86 94 52 67 49</th> <th>146 15 98 30 137</th> <th>73 125 13 93 89</th> <th>40 76 37 123 145</th> <th>141 54 147 50 91</th> <th>25 99 88 138 65</th> <th>87 39 69 21 92</th> <th>126 140 109 97 33</th>	56 151 17 35 96	1	100 71 124 158 121	86 94 52 67 49	146 15 98 30 137	73 125 13 93 89	40 76 37 123 145	141 54 147 50 91	25 99 88 138 65	87 39 69 21 92	126 140 109 97 33
0,053 0,026 0,037 0,056 0,041 0,035 0,031 0,046 0,021 0,054 0,035 0,039 0,043 0,031 0,026 0,046 0,033 0,037 0,042 0,030 0,041 0,021 0,047 0,026 0,046 0,033 0,038 0,053 0,035 0,049 0,054 0,039 0,034 0,051 0,029 0,046 0,023 0,038 0,043 0,022 0,038 0,027 0,043 0,055 0,030 0,049 0,055 0,039 0,034 0,022 0,045 0,034 0,055 0,037 0,025 0,033 0,051 0,027 0,045 0,041 0,051 0,027 0,046 0,029 0,038 0,042 0,020 0,039 0,031 0,025 0,047 0,030 0,050 0,023 0,035 0,049 0,030 0,047 0,024 0,034 0,028 0,036 <td></td> <td>7</td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		7	12								
0,034 0,022 0,042 0,031 0,049 0,033 0,056 0,037 0,050 0,025 2.14. 0,026 0,034 0,028 0,036 0,030 0,038 0,041 0,038 0,030 0,028 0,028 0,030 0,034 0,038 0,040 0,036 0,034 0,023 0,032 0,026 0,034 0,032 0,024 0,036 0,032 0,026 0,030 0,028 0,038 0,034 0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,032 0,040 0,036 0,030 0,036 0,034 0,032 0,023 0,032 0,024 0,036 0,038 0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,032 0,041 0,034 0,023 0,038 0,024 0,030 0,028 0,041 0,032 0,034 0,02	0,00 0,00 0,00 0,00 0,00 0,00	53 35 30 49 26 29 22 41	0,026 0,039 0,041 0,054 0,039 0,038 0,045 0,051	0,043 0,021 0,039 0,033 0,027 0,034 0,027	0,031 0,047 0,034 0,020 0,043 0,055 0,046	0,038 0,026 0,051 0,042 0,035 0,037 0,029	0,023 0,046 0,029 0,050 0,030 0,025 0,038	0,045 0,033 0,046 0,025 0,049 0,033 0,042	0,026 0,038 0,023 0,037 0,055 0,051 0,020	0,037 0,053 0,038 0,041 0,039 0,027 0,039	0,042 0,035 0,043 0,029 0,034 0,045 0,031
2.14. 0,026 0,034 0,028 0,036 0,030 0,038 0,041 0,038 0,030 0,028 0,034 0,032 0,024 0,034 0,032 0,024 0,036 0,032 0,026 0,034 0,032 0,024 0,036 0,032 0,026 0,030 0,028 0,038 0,041 0,038 0,041 0,038 0,034 0,032 0,026 0,034 0,032 0,026 0,030 0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,032 0,030 0,036 0,034 0,032 0,026 0,030 0,036 0,034 0,032 0,028 0,040 0,036 0,032 0,026 0,030 0,036 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,038 0,026 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,038 0,026 0,034 0,022 0,038 0,026 0,034 0,022 0,038 0,036 0,040 0,028 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,032 0,030 0,038 0,034 0,028 0,034 0,028 0,034 0,032 0,030 0,038 0,034 0,028 0,034 0,030 0,038 0,033 0,034 0,028 0,034 0,030 0,038 0,033 0,034 0,028 0,034 0,032 0,030 0,038 0,034 0,028 0,034 0,030 0,038 0,031 0,032 0,036 0,030 0,038 0,034 0,028 0,034 0,032 0,034 0,032 0,036 0,030 0,038 0,033 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,034 0,032 0,036 0,038 0,033 0,			*	•	•	•	•	*	*	*	
0,026 0,034 0,028 0,036 0,030 0,038 0,041 0,038 0,030 0,028 0,028 0,030 0,034 0,038 0,040 0,036 0,034 0,023 0,032 0,026 0,034 0,032 0,024 0,036 0,032 0,026 0,030 0,028 0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,034 0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,032 0,030 0,036 0,034 0,032 0,023 0,032 0,028 0,040 0,036 0,032 0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,032 0,030 0,036 0,036 0,038 0,034 0,032 0,038 0,034 0,032 0,034 0,032 0,038 0,034 0,032 0,034 0,032 0,034 0,034 0,026 0,034 0,034 0,023 0,038 0,034 0,026 0,030 0,036 0,034 0,028 0,034 0,026 0,034 0,034 0,028 0,034 0,040 0,038 0,034 0,032 0,030 0,036 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,034 0,032 0,030 0,036 0,040 0,036 0,030 0,038 0,034 0,030 0,036 0,034 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,036 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,036 0,030 0,036 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,034 0,034 0,032 0,034 0,034 0,032 0,034 0,034 0,032 0,034 0,034 0,032 0,034 0,034 0,034	0,0		·	0,042	0,031	0,049	0,033	0,030	0,037	0,030	0,023
0,034 0,032 0,024 0,036 0,032 0,026 0,030 0,028 0,038 0,034 0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,032 0,030 0,036 0,034 0,032 0,023 0,032 0,028 0,032 0,026 0,038 0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,030 0,036 0,028 0,041 0,032 0,038 0,034 0,026 0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,032 0,038 0,034 0,028 0,034 0,038 0,034 0,038 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,032 0,030 0,038 0,034 0,026 0,030 0,038 0,034 0,032 0,026 0,031 0,038 0,034 0,032 0,026 0,034 0,036 0,030 0,038 0,034 0,032 0,026 0,034 0,036 0,036 0,030 0,038 0,034 0,032 0,026 0,034 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,038 0,034 0,038	0,0			0,028	0,036	0,030	0,038	0,041	0,038	0,030	0,028
0,038 0,041 0,028 0,026 0,030 0,034 0,032 0,040 0,036 0,032 0,030 0,036 0,034 0,032 0,023 0,032 0,028 0,032 0,026 0,038 0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,030 0,036 0,028 0,041 0,032 0,038 0,034 0,026 0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,024 0,036 0,032 0,038 0,034 0,028 0,030 0,026 0,034 0,028 0,034 0,032 0,038 0,032 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,034 0,032 0,036 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,023 0,034 0,032 0,026 0,031 0,038 0,031	0,0	28	0,030					0,034	0,023		
0,030 0,036 0,034 0,032 0,023 0,032 0,028 0,032 0,026 0,038 0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,030 0,036 0,028 0,041 0,032 0,038 0,034 0,026 0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,040 0,038 0,032 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,036 0,030 0,038 0,034 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,038 0,034 0,032 0,036 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,038 0,034 0,032 0,036 0,036 0,030 0,038 0,034 0,032 0,036 0,036 0,030 0,038 0,034 0,032 0,036 0,036 0,030 0,038 0,034 0,032 0,036 0,036 0,030 0,038 0,034 0,032 0,036 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,030 0,038 0,034 0,032 0,034 0,032 0,030 0,038 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034 0,032 0,034	0,0	34	0,032	0,024	0,036	0,032	0,026	0,030	0,028	0,038	0,034
0,026 0,032 0,028 0,040 0,038 0,030 0,032 0,024 0,036 0,030 0,024 0,032 0,030 0,036 0,028 0,041 0,032 0,038 0,034 0,026 0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,034 0,028 0,034 0,028 0,034 0,036 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,034 0,032 0,030 0,038 0,032 0,034 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,038 0,032 0,036 0,038 0,032 0,036 0,038 0,038 0,033 0,038	-		0,041	0,028	•		•	-	-	0,036	
0,024 0,032 0,030 0,036 0,028 0,041 0,032 0,038 0,034 0,026 0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,036 0,032 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,032 0,034 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,032 0,036 0,036 0,036 0,036 0,038 0,023 0,034 0,032 0,026 0,036 0,036 0,038 0,023 0,034 0,032 0,026 0,036 0,036 0,038 0,023 0,034 0,032 0,026 0,036 0,036 0,038 0,023 0,034 0,032 0,026 0,036 0,036 0,038 0,023 0,034 0,032 0,026 0,036 0,036 0,038 0,023 0,034 0,032 0,036 0,038	-		*	*	•	•	•	-	-	*	
0,041 0,034 0,023 0,038 0,026 0,030 0,028 0,036 0,040 0,028 0,030 0,026 0,034 0,028 0,024 0,036 0,032 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,023 0,034 0,032 0,026 2.15. 0,86 1,04 1,45 1,31 1,22 1,09 0,73 1,11 0,95 0,84 0,96 0,78 1,23 1,13 1,04 1,44 1,32 1,29 0,68 0,86 1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.	•		-	*	•	•	•	-	-	•	
0,030 0,026 0,034 0,028 0,024 0,036 0,032 0,030 0,038 0,034 0,028 0,034 0,040 0,036 0,030 0,038 0,023 0,034 0,032 0,026 2.15. 0,86 1,04 1,45 1,31 1,22 1,09 0,73 1,11 0,95 0,84 0,96 0,78 1,23 1,13 1,04 1,44 1,32 1,29 0,68 0,86 1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.	,			,	,		,	•	•	•	
0,028 0,034 0,040 0,036 0,030 0,038 0,023 0,034 0,032 0,026 2.15. 0,86 1,04 1,45 1,31 1,22 1,09 0,73 1,11 0,95 0,84 0,96 0,78 1,23 1,13 1,04 1,44 1,32 1,29 0,68 0,86 1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83	,		,	-	,	,	•	•	*	•	•
2.15. 0,86				•							
0,86 1,04 1,45 1,31 1,22 1,09 0,73 1,11 0,95 0,84 0,96 0,78 1,23 1,13 1,04 1,44 1,32 1,29 0,68 0,86 1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95	0,0	28	0,034	0,040	0,036	0,030	0,038	0,023	0,034	0,032	0,026
0,96 0,78 1,23 1,13 1,04 1,44 1,32 1,29 0,68 0,86 1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92								0.74			
1,33 1,08 0,87 0,67 1,28 0,97 1,14 0,83 1,33 1,40 1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92							•	•		•	
1,24 1,43 0,98 1,34 0,81 0,88 1,10 0,70 1,15 1,23 1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92			•								
1,34 1,09 0,80 1,16 1,24 0,75 0,99 1,41 0,88 0,79 1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.											
1,36 1,25 0,89 1,26 1,42 1,35 0,80 1,17 0,90 1,00 1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.			•	*		•	•	•	•	•	
1,11 0,69 1,18 0,82 1,01 0,90 1,36 1,25 0,67 0,91 1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.			-				•			*	•
1,37 1,02 0,92 1,27 1,19 1,38 1,46 0,93 1,27 0,83 1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.								•		*	
1,04 1,11 1,47 1,07 0,72 0,93 1,26 0,77 1,20 1,28 0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.			-							*	•
0,77 1,10 0,95 1,05 1,08 1,11 1,10 1,48 1,07 0,92 2.16.											
2.16.			•	*		•	•	•	-	•	
	0,7			0,73	1,03	1,00	1,11	1,10	1,10	1,07	0,72
	0,7			0,70	0,86	0,78	0,96	0,68	0,83	0,92	0,86

0,86 0,78 0,83 0,87 0,79 0,76 0,96 0,74 0,88	0,84 0,70 0,75 0,71 0,82 0,90 0,98 0,67 0,80	0,66 0,82 0,95 0,92 0,65 0,71 0,84 0,94	0,92 0,99 0,79 1,00 0,83 0,87 0,79 0,72 0,91	0,76 0,83 0,65 0,75 0,88 0,74 0,91 1,01 0,84	0,95 0,86 0,84 0,87 0,96 0,94 0,71 0,82 0,74	0,84 0,67 0,78 0,80 0,75 0,80 0,65 0,80 0,94	1,91 0,91 0,88 0,79 0,91 1,00 0,90 0,83 0,72	0,78 0,75 0,70 0,66 0,71 0,95 0,88 0,99 0,83	0,70 0,86 0,95 0,90 0,87 0,79 0,74 0,83 0,87
	2.17.								
1,66 2,27 1,15 2,39 1,78 1,88 1,56 2,15 2,31 2,14	2,21 0,81 2,17 1,63 2,09 1,27 2,30 1,72 1,39 1,76	1,21 2,39 1,45 1,86 1,54 0,84 2,48 1,83 1,85 1,51	1,46 2,19 1,75 1,24 1,79 2,60 0,99 1,47 2,38 1,82	1,16 2,25 1,14 1,73 1,08 1,44 1,18 1,87 1,65 0,91	1,81 1,67 1,94 1,07 1,42 1,77 2,11 1,17 2,51 2,51	0,86 1,84 1,53 2,10 0,80 2,45 1,64 2,29 1,48 2,34	1,74 1,37 0,83 1,13 1,96 1,10 2,28 1,90 1,28 2,59	2,08 2,12 1,68 1,91 1,19 2,16 1,29 1,71 2,18 1,69	1,38 2,37 1,35 1,31 0,85 1,59 1,93 2,55 1,49 2,13
	2.18.								
2,1 1,3 2,1 1,1 4,1 2,1 2,1 3,2 2,8 1,1	2,3 2,3 3,3 2,4 2,9 3,2 3,9 1,6 4,1 3,5	1,5 2,3 0,8 1,5 2,0 0,9 2,4 0,7 1,9	3,1 3,9 3,5 3,2 2,0 2,8 1,7 2,6 3,6 2,4	2,7 2,4 1,7 2,7 1,1 4,2 3,6 1,3 3,3 3,9	1,9 3,6 2,6 1,5 0,7 2,8 2,5 2,0 2,9 2,7	2,4 1,6 4,1 3,7 3,3 1,9 0,8 3,7 0,6 2,5	0,9 3,2 2,8 1,9 2,5 1,2 3,1 2,9 1,5 1,9	2,5 2,9 1,2 3,1 1,6 1,7 2,1 4,0 1,2 2,6	1,1 2,0 2,5 4,0 2,4 3,5 1,3 3,1 2,4 3,2
19,3 42,7 25,5 40,6 25,3 38,4 28,6 22,7 51,9	2.19. 44,5 17,5 27,2 14,5 43,1 19,7 47,9 64,8 31,3	49,9 51,7 80,4 62,8 27,4 63,8 78,4 36,2 44,7	26,9 49,3 50,4 34,5 80,1 40,4 57,4 58,7 66,3	50,2 26,2 70,2 53,4 68,4 80,8 66,5 10,8 20,1	51,1 47,1 14,9 26,1 63,3 56,4 37,3 47,7 65,3	18,6 71,4 52,4 69,3 13,4 66,1 23,4 58,4 45,5	72,7 27,1 62,3 52,5 55,4 27,5 67,6 29,2 76,3	35,4 75,7 41,7 27,3 39,5 79,1 11,1 46,7 67,8	25,4 43,2 49,5 80,3 33,1 24,6 64,3 77,2 35,1

2.20. 56,5 47,3 23,1 38,6 92,5 50,9 74,9 67,5 47,5 83,9 11,8 70,1 57,1 39,9 54,7 70,9 47,4 28,1 39,1 76,2 32,3 92,1 20,7 48,6 87,1 66,3 45,8 41,4 56,9 22,6 45,8 58,4 53,4 51,4 11,6 30,9 31,4 37,4 65,8 19,3 45,3 74,4 21,2 25,7 56,7 20,3 48,3 60,1 46,2 64,1 15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 75,6 42,2 55,2 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 22.1 15,2 23,1 27,	66,9	18,9	42,9	50,7	34,9	43,5	32,5	48,4	53,1	65,8
11,8 70,1 57,1 39,9 54,7 70,9 47,4 28,1 39,1 76,2 32,3 92,1 20,7 48,6 87,1 66,3 45,8 41,4 56,9 22,6 45,8 58,4 51,4 11,6 30,9 31,4 37,4 65,8 19,3 45,3 74,4 21,2 25,7 56,7 20,3 48,3 60,1 46,2 64,1 15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 56,4 25,1 75,1 83,8 38,7 81,2 26,5 87,4 35,3 92,4 85,6 83,5 20,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 221. 221. 18,6 25,1 27,5 16,0 2	2	2.20.								
32,3 92,1 20,7 48,6 87,1 66,3 45,8 41,4 56,9 22,6 45,8 58,4 53,4 51,4 11,6 30,9 31,4 37,4 65,8 19,3 45,3 74,4 21,2 25,7 56,7 20,3 48,3 60,1 46,2 64,1 15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 56,4 25,1 75,1 83,8 38,7 81,2 65,1 87,4 35,3 92,4 85,6 83,5 20,5 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 22.1. 21.1 28,6 25,1 27,5 16,0 28,8 22,7 18,8 24,4 25,1 27,3 76,7 29,9 69,1		•		,	•	-	-	•	-	
45,8 58,4 53,4 51,4 11,6 30,9 31,4 37,4 65,8 19,3 45,3 74,4 21,2 25,7 56,7 20,3 48,3 60,1 46,2 64,1 15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 56,4 25,1 75,1 83,8 38,7 81,2 65,1 87,4 35,3 92,4 85,6 83,5 20,5 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 2.21. 15 23,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31	•		*	•	•		•	*	*	-
45,3 74,4 21,2 25,7 56,7 20,3 48,3 60,1 46,2 64,1 15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 56,4 25,1 75,1 83,8 38,7 81,2 65,1 87,4 35,3 92,4 85,6 83,5 20,5 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 22,1 11 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 20,4 24,5 26,0 28,7 20,0 33,0 27,	•	•	•		,	•	*	-	-	
15,1 47,7 12,7 92,6 29,5 52,0 60,2 32,1 74,5 54,2 36,1 47,2 26,1 65,3 42,0 50,1 72,1 56,4 25,1 75,1 83,8 38,7 81,2 66,1 87,4 35,3 92,4 85,6 83,5 20,5 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 2.21. 2.21. 118,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 20,4 24,1 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1		-	*			-		-		
83,8 38,7 81,2 65,1 87,4 35,3 92,4 85,6 83,5 20,5 76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 2.21. 15,2 23,1 27,1 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,1 19,1 24,7	•		*	92,6	29,5	,		-		
76,3 69,4 41,6 35,9 29,7 80,9 49,9 59,5 83,4 76,5 24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 2.21. 15,2 23,1 27,1 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6	36,1	47,2	26,1	65,3	42,0	50,1	72,1	56,4	25,1	75,1
24,4 55,9 74,2 27,3 76,7 29,9 69,1 30,1 65,4 18,4 2.21. 15,2 23,1 27,1 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 2,22. 22. 22.		-	•				-			
2.21. 15,2 23,1 27,1 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58	,	•		•	•	,	•	-	•	
15,2 23,1 27,1 18,6 25,1 27,5 16,0 28,8 22,7 18,8 24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 2,9 23,5 19,6<	24,4	55,9	74,2	27,3	76,7	29,9	69,1	30,1	65,4	18,4
24,9 26,3 21,2 28,0 25,5 27,7 20,9 31,9 16,8 29,1 26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 2,03 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2,19 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 2,39 18,5 24,1 28,1 22,0 <td></td> <td></td> <td>25.1</td> <td>10.5</td> <td>25.4</td> <td>25.5</td> <td>1.60</td> <td>20.0</td> <td>22.5</td> <td>10.0</td>			25.1	10.5	25.4	25.5	1.60	20.0	22.5	10.0
26,8 17,4 31,5 21,4 24,8 17,2 30,8 23,7 29,7 21,1 20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 22,2 19,2 27,3 23,3 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1	•	•			•	-		-		-
20,4 24,5 26,0 28,7 20,0 33,0 27,9 24,5 20,6 32,1 26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 22.2 22.2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,				•		-				
26,9 19,7 21,5 19,8 16,8 21,7 26,4 23,2 22,9 26,6 25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 22.2 22.2 22.2 22.2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,	•		*	•	,	,	•	•	-	
25,3 25,8 16,6 23,6 15,0 22,3 24,0 22,4 32,5 19,1 24,7 29,8 18,2 29,6 23,4 18,1 16,9 24,2 24,1 32,2 24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3	•			•		,	•		-	
24,4 18,4 22,1 30,1 22,0 17,8 28,0 25,7 30,9 22,5 30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1		•	*	•		-	•	*		
30,7 22,5 30,0 27,3 25,4 26,2 20,7 28,1 19,3 28,9 20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4	24,7	29,8	18,2	29,6	23,4	18,1	16,9	24,2	24,1	32,2
20,3 30,4 24,3 31,6 30,0 22,6 29,2 32,7 26,7 15,8 2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2		,				,	•	*	•	
2.22. 19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58	•	,	*	•	•	,	•	•	•	
19,1 23,5 19,6 27,5 33,3 31,2 27,7 21,4 27,3 20,5 21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135	20,3	30,4	24,3	31,6	30,0	22,6	29,2	32,7	26,7	15,8
21,9 20,7 15,2 27,3 23,0 31,7 18,9 23,7 33,1 27,9 23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 </td <td></td> <td></td> <td>40.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			40.4							
23,9 18,5 24,1 28,1 22,0 16,4 30,8 27,1 19,9 30,4 20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 108 78 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>*</td> <td>*</td> <td></td>							•	*	*	
20,5 30,9 31,9 26,9 19,8 28,3 22,7 15,6 22,4 18,3 28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
28,5 16,2 22,5 18,1 28,4 33,9 30,8 19,6 26,7 32,5 21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153						•				
21,1 24,3 26,5 15,4 24,5 26,4 28,7 17,9 30,6 23,1 32,1 23,2 17,7 28,9 22,9 20,1 30,4 26,3 16,0 25,4 26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58		•								
26,1 15,8 30,2 19,4 25,1 25,3 17,5 24,7 21,7 29,1 21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58						,		-		
21,2 21,8 17,3 33,5 29,3 24,9 30,0 15,0 25,2 25,8 33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58		23,2	17,7		22,9	20,1	30,4	26,3	16,0	25,4
33,7 24,5 25,6 23,3 29,8 17,2 25,1 22,4 29,6 19,3 2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58										
2.23. 81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58										
81 106 135 170 206 60 181 178 154 103 78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58	33,/	24,5	25,6	23,3	29,8	17,2	25,1	22,4	29,6	19,3
78 176 31 204 145 85 229 47 108 234 110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58			40-	4 = ^	• • •		4.0.1	4=0	. .	4.0.5
110 207 241 168 133 68 174 143 89 182 203 153 172 93 48 228 255 134 112 58										
203 153 172 93 48 228 255 134 112 58										
	144	235	114	77	208	183	59	170	95	154

104	202	39	164	247	226	110	67	121	193
123	91	164	57	209	30	185	162	250	225
201	160	239	211	131	142	101	153	76	125
137	54	127	87	66	190	158	241	33	221
100	195	156	146	231	220	129	83	151	56
2	2.24.								
76	28	151	91	60	204	177	102	128	217
120	66	207	126	124	152	27	221	131	51
241	77	250	134	123	147	184	195	47	160
159	74	169	178	79	129	250	223	182	96
135	199	56	25	82	116	44	229	145	203
88	209	146	224	239	103	201	245	130	163
71	165	176	194	78	154	99	78	127	69
171	173	31	181	117	84	73	161	240	149
247	107	140	53	205	155	29	132	185	179
180	128	42	114	93	191	174	210	133	226
	2.25.								
157,2	137,1	136,0	131,1	142,1	152,0	150,2	125,74	146,6	141,6
138,3	143,4	143,7	144,2	158,3	146,0	140,8	135,8	150,9	156,4
145,1	122,4	139,1	155,5	150,2	146,2	159,6	146,2	164,1	140,5
156,4	141,6	134,4	149,2	145,3	128,4	150,6	133,7	142,1	136,9
127,2	138,2	160,8	155,2	121,8	150,5	144,5	150,5	141,4	128,0
136,2	145,9	162,5	136,9	142,9	146,4	153,2	161,4	150,8	141,6
149,8	154,1	148,4	144,8	150,8	129,3	145,3	141,2	146,4	135,5
134,8	147,1	137,5	159,7	142,7	145,7	150,3	123,5	139,6	153,6
138,4	166,8	148,8	152,5	151,6	133,4	145,6	144,5	144,4	140,8
152,1	137,4	132,1	149,7	166,2	151,1	145,1	139,5	130,1	145,6
2	2.26.								
2,85	5,92	3,06	2,47	6,28	3,86	2,19	5,81	3,88	3,01
3,91	3,11	1,46	4,67	3,95	5,76	3,08	3,99	6,38	1,51
2,34	4,19	5,72	4,14	3,03	4,08	6,47	4,05	5,96	4,01
4,23	2,16	6,55	3,14	4,26	4,31	1,48	4,45	2,71	5,69
6,60	4,69	2,93	7,68	0,65	6,68	3,18	5,64	4,56	3,36
2,64	3,23	6,75	4,57	5,61	3,29	7,08	2,91	4,59	2,59
4,61	1,98	6,21	3,39	4,62	2,28	4,64	3,45	5,56	4,07
3,58	4,73	3,61	2,24	4,31	3,81	5,52	4,26	4,17	7,49
1,29	4,45	4,78	5,01	7,85	5,49	2,01	4,89	0,98	4,84
2,26	5,47	4,63	4,98	5,42	4,60	5,10	4,96	4,63	5,05
	2.27.	, -	, -	,	, -	, -	, -	, -	, -
76,23	45,29	92,41	35,48	56,81	45,67	54,01	45,88	25,56	65,91
48,11	6,32	26,31	74,27	27,82	88,04	36,12	56,97	4,97	46,31
*		-	•	•	*	•	*		*

55,78	46,85	57,31	37,28	66,41	28,53	72,48	29,34	38,34	62,35
46,82	39,47	81,04	54,06	48,64	61,22	40,56	30,11	78,45	48,53
86,24	47,51	66,92	42,74	4,83	47,83	64,02	57,84	41,63	53,75
65,21	43,82	58,31	33,71	44,95	68,91	32,84	45,21	84,47	31,27
49,29	83,09	55,11	94,75	49,85	58,86	55,30	69,44	50,41	35,07
67,24	41,78	50,56	34,05	37,91	71,25	17,84	14,51	18,23	51,93
50,89	9,41	16,31	51,33	70,58	15,91	51,84	59,31	25,01	60,31
85,52	59,77	75,26	52,22	95,73	19,04	60,85	22,91	53,84	15,02
	. 20								
	2.28.	0.00	1.76	1 5 4	2.10	1 12	2.50	1 01	1.60
1,58	1,95	0,89		1,54	2,18	1,13	2,59	1,91	1,60
1,19	1,70	2,58	1,31	2,54	1,90	2,20	1,49	2,69	1,51
1,77	1,93	1,48		1,64	2,92	1,25	1,97	0,90	1,78
1,12	2,48	1,38	1,79	1,75	0,67	2,22	1,62	1,82	1,09
1,61	1,71	0,95	2,23	1,46	1,99	2,24	1,72	2,03	1,25
1,28	2,04	1,83	1,69	1,81	1,22	2,05	1,07	1,74	1,88
1,80	0,69	2,07	1,29	2,27	2,75	1,41	2,08	2,30	2,18
1,34	1,84	1,73	2,31	1,86	1,40	2,46	0,73	2,33	1,85
1,02	2,13	1,66	,	1,16	2,34	1,44	2,89	2,09	2,90
1,87	1,43	2,11	0,84	1,91	2,44	2,10	1,75	2,60	1,68
2	2.29.								
30,2	51,9	43,1	58,9	34,1	55,2	47,9	43,7	53,2	34,9
47,8	65,7	37,8	68,6	48,4	67,5	27,3	66,1	52,0	55,6
54,1	26,9	53,6	42,5	59,3	44,8	52,8	42,3	55,9	48,1
44,5	69,8	47,3	35,6	70,1	39,5	70,3	33,7	51,8	56,1
28,4	48,7	41,9	58,1	20,4	56,3	46,5	41,8	59,5	38,1
41,4	70,4	31,4	52,5	45,2	52,3	40,2	60,4	27,6	57,4
29,3		46,3	40,1	50,3	48,9	35,8	61,7	49,2	45,8
45,3	•	35,1	57,8	28,1	57,6	49,6	45,5	36,2	63,2
61,9		65,1	49,7	62,1	46,1	39,9	62,4	50,1	33,1
33,3	49,8	39,8	45,9	37,3	78,0	64,9	28,8	62,5	58,7
2	2.30.								
88	72	100	60	116	74	36	143	114	70
56	75	30	76	89	53	117	90	135	103
35	128	71	86	43	76	61	113	34	83
62	84	50	69	120	91	102	47	119	99
33	76	91	37	85	17	85	63	121	74
46	85	63	104	77	92	54	78	42	105
85	79	49	80	93	32	106	81	64	79
73	19	80	65	107	123	51	94	80	108
52	83	124	81	96	82	109	20	95	68
66	41	82	98	111	67	125	97	112	58

- 3. Используя интервальный ряд из задания 2, требуется:
- а) вычислить теоретические частоты, предполагая по нулевой гипотезе, что генеральная совокупность имеет нормальный закон распределения;
- б) пользуясь критерием Пирсона при уровне значимости $\alpha = 0.05$, сравнить теоретические и эмпирические частоты. Вычислить $\chi^2_{_{nd\delta 1}}$ и сравнить с $\chi^2_{_{\alpha,\kappa}}$;
- в) найти доверительные интервалы для математического ожидания и для среднего квадратичного отклонения при надежности $\gamma=0.95$.

2.3 Решение типового варианта

1. Значения признаков *X и Y* заданы корреляционной таблицей:

Y	20	30	40	50	60	70	80
X							
250	19	5	-	-		-	-
350	23	116	11	-	-	-	-
450	1	41	98	9	-	-	-
550	-	4	32	65	7	-	-
650	-	1	4	21	36	3	-
750	-	-	1	2	12	16	3

Требуется найти:

- а) выборочные средние признаков x_e , y_e ;
- б) среднеквадратичные отклонения sx, sy;
- в) коэффициент линейной корреляции r_{xy} ;
- Γ) уравнения прямых регрессий y на x и x на y.

Решение:

а) путем суммирования частот по столбцам получим вариационный ряд распределения признака X:

X	250	350	450	550	650	750
n_{i}	24	150	149	108	75	34

Аналогично, путем суммирования частот по строкам получим вариационный ряд распределения признака *Y*:

Y	20	30	40	50	60	70	80
$n_{_{j}}$	43	167	146	97	55	19	3

Находим объем выборки и выборочные средние составляющих:

$$n = \sum_{1}^{6} n_{ix} = \sum_{1}^{7} n_{jy} = 530 ;$$

$$xe = \frac{1}{n} \sum_{1}^{6} x_{i} n_{ix} = 476 ,79 ;$$

$$ye = \frac{1}{n} \sum_{1}^{7} y_{i} n_{jy} = 40 ,43 ;$$

б) вычисляем выборочные дисперсии составляющих:

$$s_{x}^{2} = \frac{1}{n} \left(\sum_{i=1}^{6} x_{i}^{2} n_{ix} \right) - xe^{2} = 16640 ;$$

$$s_{y}^{2} = \frac{1}{n} \left(\sum_{i=1}^{7} y_{j}^{2} n_{jy} \right) - ye^{2} = 164 ,906 ;$$

$$sx = \sqrt{16640} \approx 128,999$$
; $sy = \sqrt{164,906} \approx 12,842$;

в) находим корреляционный момент sx:

$$sxy = \frac{1}{n} \left(\sum_{i}^{6} \sum_{j}^{7} x_{i} y_{j} n_{ij} - x \varepsilon \cdot y \varepsilon \right).$$

Так как

$$sxy = \frac{1}{530} (20 \cdot (19 \cdot 250 + 23 \cdot 350 + 450) + + 30 \cdot (5 \cdot 250 + 116 \cdot 350 + 41 \cdot 450 + 4 \cdot 550 + 650) + \dots + 70 \cdot (3 \cdot 650 + 16 \cdot 750) + 80 \cdot 3 \cdot 750) - 476, 79 \cdot 40, 43 = 1466,$$

вычисляем коэффициент корреляции:

$$r_{xy} = \frac{sxy}{sx \cdot sy} = \frac{1466}{129 \cdot 12,85} \approx 0,885 ;$$

 Γ) оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение y на x имеет вид:

$$y(x) = ye + s_{xy} \frac{s_y}{s_y} (x - xe).$$

Тогда

$$y(x) = 40,434 - 0,885 \cdot \frac{12,842}{129} (x - 476,8),$$

ИЛИ

$$y(x) = 0.888 x - 1.563$$
.

Уравнение регрессии х на у имеет вид:

$$x(y) = xe + s_{xy} \frac{s_x}{s_y} (y - ye) = 8,88 y - 117,404$$
.

- 2. Дан статистический ряд:
- а) составить вариационный ряд;
- б) интервальный статистический ряд (минимальную и максимальную варианты, размах варьирования, эмпирические частоты интервалов);
- в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
- г) найти выборочную среднюю, выборочную и исправленную выборочную дисперсии;
 - д) исправленное выборочное среднеквадратическое отклонение:
 - е) выборочные моду и медиану;
 - ж) выборочные начальные моменты третьего и четвертого порядков;
 - и) выборочный эксцесс;
 - к) коэффициент асимметрии.

20	15	17	19	23	18	21	15	16	13
20	16	19	20	14	20	16	14	20	19
15	19	17	16	15	22	21	12	10	21
18	14	14	18	18	13	19	18	20	23
16	20	19	17	19	17	21	17	19	17
13	17	11	18	19					

Решение:

а) объём выборки n=55. \mathbf{Y}^{T} - выборка в порядке возрастания:

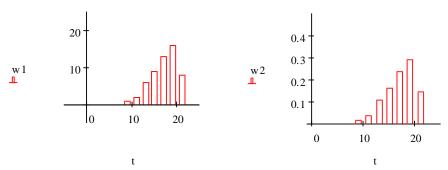
$Y^T =$		0	1	2	3	4	5	6	7	8	9
	0	10	11	12	13	13	14	14	14	14	

б) для построения интервального статистического ряда определим сначала следующее:

наибольшие и наименьшие варианты: $a=x_{\min}=10$, $b=x_{\max}=23$; размах выборки: R=b-a=13 ; величину интервалов округляем до целого и найдём по формуле Стерджеса:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{1 + \log_{2} 55} \approx 2 \rightarrow m = \frac{13}{2} = 6,781 \approx 7;$$

за начало первого интервала рекомендуется брать величину;

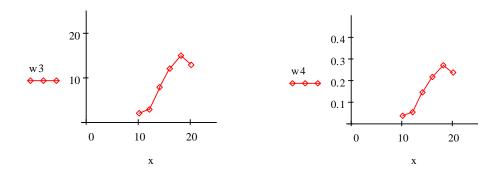

$$x_{Hay} = x_{min} - \frac{h}{2} = 10 - \frac{h}{2} = 9.041 \approx 9;$$

$$n_i$$
 – эмпирические частоты, $p_i = \frac{n_i}{n}$ – относительные частоты.

Таким образом, искомый интервальный ряд имеет вид:

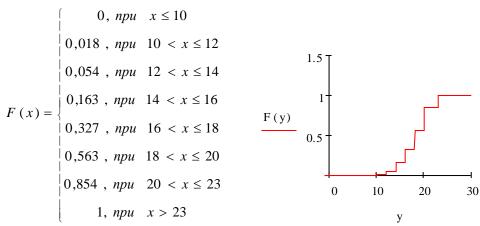
интервалы	[9,11)	[11,13)	[13,15)	[15,17)	[17,19)	[19,21)	[21,23]
n_i	1	2	6	9	13	16	8
$p_{i} = \frac{n_{i}}{n}$	0,018	0,036	0,109	0,164	0,236	0,291	0,145

в) по интервальному статистическому ряду построим гистограмму частот и относительных частот:


Для построения соответствующего дискретного статистического ряда найдём середины интервалов по формуле:

$$X_i = \frac{x_i + x_{i+1}}{2} \ .$$

$$X_i = \begin{pmatrix} 10 & 12 & 14 & 16 & 18 & 20 & 22 \end{pmatrix}.$$


Им будут отвечать соответствующие частоты - w1 и относительные частоты- w2 из интервального ряда. Искомый дискретный статистический ряд имеет вид:

$\frac{x_i + x_{i+1}}{2}$	10	12	14	16	18	20	22
n_i	1	2	6	9	13	16	8
p_{i}	0,018	0,036	0,109	0,164	0,236	0,291	0,145

По данному дискретному статистическому ряду строится полигон частот и относительных частот:

а также найдем эмпирическую функцию распределения:

г) – выборочная средняя:

$$\overline{x}_{g} = \frac{\sum_{i} x_{i}^{n} n_{i}}{n} = 17.564$$
 ;

- выборочная дисперсия:

$$D_{6} = \frac{\sum_{i}^{n} n_{i} \cdot x_{i}^{2}}{n} - (\overline{x}_{6})^{2} = 8,428 ;$$

- исправленная выборочная дисперсия:

$$S^2 = \frac{n}{n-1} (D_g) = 8,584$$
;

д) – исправленное выборочное среднеквадратическое отклонение:

$$\sigma = \sqrt{s} = 2.93 \; ;$$

- е) мода $M_0 = 19$ определяет варианту, имеющую наибольшую частоту, медиана $M_e = 18$ определяет середину вариационного ряда и зависит от чётности объёма выборки;
- ж) выборочные центральные моменты третьего и четвертого порядков вычисляются по формулам:

$$\mu_{3} = \frac{\sum_{i} n_{i} \cdot (x_{i} - x_{e})^{3}}{n} = -14,73; \quad \mu_{4} = \frac{\sum_{i} n_{i} \cdot (x_{i} - x_{e})^{4}}{n} = 196,112;$$

и) – выборочный эксцесс:

$$E = \frac{\mu_4}{\sigma_8^4} - 3 = \frac{196,112}{2,93} - 3 = -0,19552 ;$$

43

к) – коэффициент асимметрии:

$$A = \frac{\mu_3}{\sigma_B^3} = \frac{-14,73}{2,93} = -0,6091.$$

3. Дан интервальный ряд с объемом выборки n=300:

Номер	1	2	3	4	5	6	7
интервал	[-20;-10)	[-10;0)	[0;10)	[10;20)	[20;30)	[30;40)	[40;50]
частота	20	47	80	89	40	16	8

Требуется:

- а) вычислить теоретические частоты, предполагая по гипотезе H_o о нормальном распределении;
- б) пользуясь критерием Пирсона при уровне значимости $\alpha = 0.05$, сравнить теоретические и эмпирические частоты. Вычислить $\chi^2_{_{ndón}}$ и сравнить с $\chi^2_{_{\kappa pum}} = \chi^2_{_{\alpha,\kappa}}$;
- в) найти доверительные интервалы для математического ожидания и для среднего квадратичного отклонения при надежности $\gamma=0.95$.

Решение:

а) для данной выборки найдем выборочные среднее, дисперсия и среднеквадратичное отклонение:

$$\overline{x}_{6} = \frac{1}{300} \sum_{i} x_{i} \cdot n_{i} = 10,4;$$

$$D_{6} = \frac{\sum_{i} n_{i} \cdot x_{i}^{2}}{n} - (\overline{x}_{6})^{2} = 186,84; \quad \sigma = \sqrt{D_{6}} = 13,67;$$

Вычислим теоретические частоты, учитывая n=300, h=10, σ = 13,67 по формуле:

$$nt_{i} = \frac{nh}{\sigma} \varphi(z_{i}) = \frac{300 \cdot 10}{13.67} \varphi(z_{i});$$

$$z_{i} = \frac{xx_{i} - x_{g}}{\sigma};$$

$$xx_{i} = \frac{x_{i} + x_{i}}{2}.$$

б) для сравнения эмпирических (ne) и теоретических (nt) частот с помощью критерия Пирсона необходимо далее вычислить наблюдаемое значение критерия:

$$\chi_{H}^{2} = \sum_{i} \frac{(ne_{i} - nt_{i})^{2}}{nt_{i}} = \sum_{i} \frac{(ne_{i})^{2}}{nt_{i}} - n = 9,23$$
.

При заданном уровне значимости α =0,05 найдем число степеней свободы k=m-3=7-3=4, где m=7 — число групп выборки, и определим критическое значение:

$$\chi^{2}_{\kappa pum} = \chi^{2}_{\alpha,\kappa} = \chi^{2}_{0.05,4} = 9.5$$
.

Сравним наши полученные данные:

 $\chi_{_{_{\mathit{H}}}}^{^{2}}=9,23<\chi_{_{\mathit{крит}}}^{^{2}}=9,5$ — гипотеза H_{o} о нормальном распределении принимается;

в) если генеральная совокупность распределена нормально, то надежностью $\gamma=0.95$ можно утверждать, что математическое ожидание a случайной величины X покрывается доверительным интервалом:

$$x_{e} - \frac{\sigma_{e}}{\sqrt{n}}t_{\gamma} < a < x_{e} + \frac{\sigma_{e}}{\sqrt{n}}t_{\gamma}$$

где t_y определяется через функцию Лапласа:

$$\Phi(t_{\gamma}) = \frac{\gamma}{2} = \frac{0.95}{2} \Rightarrow t_{\gamma} = 1.984$$
.

В нашем случае доверительный интервал:

$$10, 4 - \frac{13,67}{\sqrt{300}} 1,984 < a < 10, 4 + \frac{13,67}{\sqrt{300}} 1,984$$

или

$$8,8341 < a < 11,9658$$
.

Доверительный интервал, покрывающий среднее квадратичное отклонение с надежностью $\gamma = 0.95$:

$$\sigma_a(1-q) < \sigma < \sigma_a(1+q)$$
.

где $q=q(\gamma;n)$ находится по данным γ и n из таблицы [8]. При $\gamma=0.95$ и n=300 имеем q=0.079. В нашем случае доверительный интервал для σ :

13,67
$$\cdot (1-0.079) < \sigma < 13.67 \cdot (1+0.079)$$

или

$$12.59 < \sigma < 14.75$$

Список литературы

- 1 Гмурман В.Е. Теория вероятностей и математическая статистика.-Учебное пособие для вузов. - М.: ВШ, 2013. - 479 с.
- 2 Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: ВШ, 2004. 400 с.
- 3 Лунгу К.Н. и др. Сборник задач по высшей математике. М.: Айрис-пресс, 2011. 576 с.
- 4 Сборник индивидуальных заданий по высшей математике: В 3ч. /А.П. Рябушко, В.В. Бархатов и др. /Под ред. А.П. Рябушко. Минск: Вышэйшая школа, 2007. Ч.4. 356 с.
- 5 Мустахишев К.М., Ералиев С.Е., Атабай Б.Ж. Математика (полный курс). –Алматы: NSN-Company, 2009. 429 с.
- 6 Ивановский Р.И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами изадачами в среде Mathcad. СПб.: БХВ- Петербург, 2008. 528 с.
- 7 Масанова А.Ж., Толеуова Б.Ж. Компьютерное решение задач операционного исчисления и теории вероятностей. Методические указания и задания по выполнению расчетно-графических работ №1,2 для студентов специальности 5В071900 Радиотехника, электроника и телекоммуникации).— Алматы: АУЭС, 2014. 37 с.
- 8 Масанова А.Ж., Толеуова Б.Ж. Компьютерное решение задач операционного исчисления и теории вероятностей. Методические указания и задания по выполнению расчетно-графических работ №3,4 для студентов специальности 5В071900 Радиотехника, электроника и телекоммуникации).— Алматы: АУЭС, 2015. 40 с
- 9 Астраханцева Л.Н., Байсалова М.Ж. Теория вероятностей и математическая статистика. Конспект лекций для студентов специальностей 5В070400 Вычислительная техника и программное обеспечение, 5В070300 Информационные системы.— Алматы: АУЭС, 2013. 49 с.

Содержание

Введение	3
1 Расчётно-графическая работа №1. Случайные события и случайный	
процесс	3
1.2 Расчётные задания	4
1.3 Решение типового варианта	12
2 Расчётно-графическая работа №2. Случайные многомерные величины	21
2.2 Расчётные задания	22
2.3 Решение типового варианта	37
Список литературы	44

Толеуова Багила Жаксылыковна Василина Гулмира Кажымуратовна

СЛУЧАЙНЫЕ ПРОЦЕССЫ

Методические указания и задания по выполнению расчетно-графических работ для студентов специальности 5В100200 — Системы информационной безопасности

Редактор Л.Т.Сластихина	
Специалист по стандартизации	Г.И.Мухаметсариева

Подписано в печать	Формат б	50x84 1/16
Тираж 25 экз.	Бумага ті	ипографская №1
Объем 2,9 учиз.л.	Заказ	цена 1500 тг.

Копировально-множительное бюро некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, ул.Байтурсынова, 126/1