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RANDOM EVENTS AND THEIR PROBABILITIES  

 

Random events. Many phenomena in nature, the equipment, economy and in 

other areas have random character, meaning it is pretty hard to predict how things 

will occur. It turns out that the flow current of that phenomenon can be described 

quantitatively if only they were observed a sufficient number of times under 

unchanged conditions. So, for example, it is impossible to predict when throwing a 

coin, "Heads" or "Tails" will drop out. However, if one throws a coin very often, 

then it is possible to notice that the relation of the number thrown with loss of 

"Tails" to total number of throws differs a little from 1/2 and still deviates from İ 

as many throwing are performed than. 

The concept of probability gives mathematical modeling for the description 

of this type of random phenomena as objective reality. For experts who are into 

natural, technical, as well as social sciences it is important to know the bases of 

this theory as many real processes are susceptible to accidental impacts. 

The random experiment or experience is a process outcomes are possible. It 

is impossible to predict what the result will be in advance. Experience is 

characterized by the fact that it is possible to repeat it as many times as you wish. 

Of particular importance are the many possible mutually exclusive outcomes of 

experience. 

The possibility of excluding each other results of experience is called 

Elementary Events. The set of Elementary Events is designated through E. For 

example, casting a coin there is heads falling, i.e., H ï çheadsè is the elementary 

event, T ï çtailsè is the elementary event. For example, infinite Sample Space. Flip 

a coin until heads appears for the first time: ,...},,,,{ TTTTHTTTHTTNTHHS= . 

Example 1. A one-time throwing of a playing dice. The possible results of 

this experiment excluding each other are in loss of one of the numbers 1, 2, 3, 4, 5, 

6. The E set consists of six elementary events ὩȟὩȟὩȟὩȟὩȟὩ, while the 

elementary event Ὡ means: number 1 drops out. 

Example 2. Simultaneous throwing of two dice. The E set of elementary 

events consists of 36 elements Ὡ ȟὩ ȟȣȟὩ , where by the elementary event Ὡȟ 

means: on the first dice i drops out, and on the second j. 

Example 3. Determination of service duration of an electric lamp. 

Elementary events are all positive real numbers here. The E set, thus, consists of a 

positive valid half shaft. 

Besides elementary events, itôs often interesting to observe the events of 

more difficult nature, for example, in case of dice the event as "drops out even 

number" or in case of determination of duration of service of a lamp an event like 

"duration of service not less than 3000 hours". 



4 

 

Letôs conduct an experiment and where E - set of its elementary events. Each 

subset  is called an Event. The Event A takes place only in case when there 

is happening one of elementary events from which A consists. 

Example 4. In the 1st example there are ὃ ὩȟὩȟὩ  subsets forms an 

event çthe even number drops outè. The event çdrops out even numberè in case of 

dice takes place then and only then when there is one of the elementary events 

which contains subset A. In the 2nd example subset ὃ Ὡ ȟὩ ȟὩ ȟὩ ȟὩ  of 

a set E can be interpreted as an event çthe sum of the dropped-out points is more or 

equal to 10è. In the 3rd example ὃ σ πππȟÐ  can be interpreted as an event çthe 

electric lamp serves more than 3000 hoursè. 

E subset and consequently both the E set, and an empty set are interpreted 

according to the general definition as events. As E consists of all elementary 

events, and in each experience surely there is one of the elementary events, thus, E 

takes place always; such event is called a Reliable Event. We will designate a 

reliable event by letter U. The empty set doesn't contain elementary events and, 

therefore, never occurs; such event is called an impossible event, we will designate 

it as a letter V.  

Empty set: The empty set is ʘ set with nʦ e1ements. We represent the ʧʠll set 

with the symbol Å. For any set A 

 

Å=ÅÖ=Å+ AAA ; . 

 

Let ὃȟὃȟȣȟὃ  events, i.e. subsets of some fixed E set of elementary 

events. Then association ὃẕὃẕȣẕὃ  is again an event as it is an E subset. 

Association ὃẕὃẕȣẕὃ  happens in only case when there is happening at least 

one of events ὃȟὃȟȣȟὃ . The event ὃẕὃẕȣẕὃ  is called the sum (Union) 

of events. It is often designated ὃ ὃ Ễ ὃ  . 

The union of two sets ɸ and ɺ is another set that includes ʘll elements of ɸ 

and ʘll elements of ɺ. We represent the union operator with this symbol ẕ or 

symbol +.  

For example, if ɸ={2,6,7,11} and ɺ={2,3,7}, then 
 

}11,7,6,3,2{=+=Ç BABA . 
 

In the same way the crossing ὃ᷊ὃ ᷊ȣ᷊ὃ  of A events, is some event 

again. Crossing ὃ᷊ὃ ᷊ȣ᷊ὃ  happens only in case when there are happening 

all A events at the same time. The event ὃ᷊ὃ ᷊ȣ᷊ὃ  is often designated 

ὃȟὃȟȣȟὃ  and called intersection of events. The intersection of two sets ɸ and 

ɺ is another set ʉ such that ʘll  elements in ʉ belong to ɸ and to ɺ. The intersection 

operator is symbolized as Æ. For example, if ɸ={2,6,7,11} and ɺ={2,3,7}, then 
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}7,2{==Æ ABBA .  

 Example 5. In determining the life longevity ὃ there is an event "life 

longevity is between 0 and ὸ", and - ὃ  "life expectancy lies between ὸ and ὸ", 

then ὃẕὃ  is an event "life expectancy between 0 and ὸ". 

Example 6. In the case of simultaneous throwing of two dices ὃ there is an 

event "sum of points more or equal to 11", ὃ - is the event "drops out identical 

quantity of points", then ὃ᷊ὃ  is an event "two six drop out". 

Example 7. In case of two dice ὃ - "the sum of the dropped-out points less 

or equal to 2",  ὃ  - the event "the sum of the dropped-out points is more or is 

equal to 5", then ὃ᷊ὃ  - an impossible event ὃ᷊ὃ ὠ. 

Two events ὃ and ὃ  are called antithetical if they can't take place at the 

same time. 

If A - some event, then addition  ὃ Ὁ͵ὃ also is an E subset i.e. some 

event.   ὃ occurs in only case when doesn't occur A; is called the event opposite 

(additional) to A. Events A and  ὃ are always incompatible: ὃ᷊ ὃ ὠ. 

Example 8. If at some measurement A - an event "the measured size ", 

then  ὃ is an event "the measured size ". 

For actions with random events (the sums, multiplication, additions) are fair 

the formulas of the elementary theory of sets: 

The commutativity 

, 

 

The associativity  

, 

 

The distributivity 

, 

 

De Morgan's formulas 

 ὃ᷾ὄ  ὃ᷊ ὄ,       ὃ᷊ὄ  ὃ᷾ ὄ,  

  

. 
 

To construct the theory of chances, it is necessary to put events in 

compliance of probability which will give a quantitative assessment to a possibility 

of their implementation. 

If E is incalculable (as, for example, in experience "establishing length of 

duty of an electric lamp"), then it is reasonable not to put probability in compliance 
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for all E subsets. It is necessary to put the limit to a certain class of events. Events 

of this class are called random events. That is subject to probability theory. 

If E of finite, then this class coincides with a class of all events. It turns out 

that the class of random events can always be chosen so that, first, there wouldnôt 

be any mathematical difficulties at introduction of probabilities and, secondly, all 

events that interest us in practice would be in the chosen class, i.e. served as 

random events in mathematical sense. Therefore, for the scientist and the engineer 

it is important to know that all random events that interest him are also random in 

sense of the mathematical theory so the stated below is applicable to them. 

Axioms of probability theory. Let the experiment be repeated n times and 

meanwhile being counted as many times as it happens. Suppose that it occurred m 

times. The ratio  

 
 

is called the relative frequency (or briefly - the frequency) of a random event A in 

n experiments. Where 

. 

Practice shows that as n increases, the frequency tends to a certain constant 

value. At the beginning of the concept of probability, a random event was tried to 

determine as the frequency limit. This led to theoretical and mathematical 

difficulties that could not be overcome. In modern theory, does not attempt to 

define the concept of probability. It is considered as the basic concept that satisfies 

certain axioms. 

Letôs consider the following properties of frequency, which can be regarded 

as experimental facts: 

1. For large n, the frequency ὡ ὃ oscillates less and less around a certain 

value. 

2. ὡ Ὗ ρ. 

3. if A and B are incompatible 
 

. 
 

Axioms of probability theory. 

1. Each random event A is associated with a number ὖὃȟ π ὖὃ ρ 

that is called probability A. 

2. The probability of a reliable event is equal to 1: ὖὟ ρ. 

3. The axiom of additivity. If ὃȟὃȟȣȟὃ  pairwise incompatible random 

events, i.e. ὃ᷊ὃ ὠ at Ὥ Ὦ, then 
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.     (1) 

For a finite number of pairwise incompatible events ὃȟὃȟȣȟὃ  the 

additivity axiom gives the relation 

 

, 

in particular 

, 
 

from which follows ὖὠ π, i.e. the probability of an impossible event is zero. 

From (1) follows that 

, 
 

since ὃȟ ὃ are inconsistent. Taking into account that  and axiom 2, we 

obtain 

.      (2) 

 For arbitrary (not necessarily pairwise incompatible) random events 

ὃȟὃȟȣȟὃ  is inequality 

.        (3) 
 

The actual definition of the probability of some random event is purely 

theoretical and often impossible. In these cases, it is necessary to make a sufficient 

number of tests and take the relative frequency of the event in question as an 

approximation of probability. 

So, for example, there is no mathematical or biological theory that allows 

one to calculate a priori the probability P(A) of a random event "the birth of twins". 

To determine P(A), it is necessary to use the statistics of a large number of births 

and to calculate how often this event occurred. Then the corresponding frequency 

can be approximately taken as the probability P(A). 

The definition of P(A) in frequency is sometimes called the "statistical 

definition" of probability. This, however, is not about the definition of probability, 

but about its evaluation 

The classical definition of the probability of an event. If the experience is 

that it is subdivided into only a finite number of elementary events, which are 

equally likely, then it is said that this is a classical case. 

For experiments of this type, the theory of probabilities was developed by 

Laplace. Examples of such experiments are throwing a coin (two equally probable 
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elementary events) or throwing a dice (six being equal elementary events). In the 

classical case, from the axioms for the probability P(A) of the event A, we obtain 

 

.         (4) 

 

In this case, under the elementary events favorable for A, such events are the 

implementation of which leads to the realization of A; In other words, these are the 

events of which A consists (understood as a subset of E). Laplace used the last 

formula to determine the probability.  

Example 9. There are 4 blue marbles, 5 red marbles, 1 green marbles, and 2 

black marbles in a bag. Suppose you select one marble at random. Find probability. 

Solution. Sample space: 12. There are 12 marbles total (4+5+1+2=12).  

There are 2 black marbles in the bag 12 is your sample space: 

P(black)=2/12=1/6. 

There are 4 blue marbles in the bag 12 is your sample space: 

P(blue)=4/12=1/3. 

4 blue + 2 black = 6. We have 12 is your sample space: 

P(blue or black) = 6/12=1/2. 

There is 1 green, so 12 ï 1 = 11 that aren`t green 12 is your sample space: 

P(not green)=11/12. 

I will definitely select a marble that is not purple because there are no purple 

marbles in the bag. Whenever the chance of something occurring is definite, the 

probability is 1. P(not purple)=1. 

Example 10. Toss two fair coins and record the outcome. Find the 

probability of finding the exactly one head in the two tosses. 

Solution. Sample space for the tossing two coins {HH, HT, TH, TT}. Here 

the letters H and T means a head or a tail respectively. Since the sum of the four 

simple events must be 1, each must have probability 1/4, then P(A)=1/4+1/4=1/2. 

Example 11. The dice was thrown once is an event "an even number falls 

out". Favorable for A are elementary events ὩȟὩȟὩ. There are six possible 

elementary events. Consequently, P(A)=3/6=1/2. 

Example 12. Two dice at the same time. In this case, the winnings are paid if 

the sum of the dropped points . What is the probability of winning? There are 

36 elementary events. Favorable for A are elementary events 

. In this case Ὡ  means: on the first dice falls i, on the 

second j. Then P(A)=6/36=1/6. 

In the classical case, combinatorial formulas are often used, for example, in 

order to calculate the number of all possible elementary events. In the box there are 



9 

 

N balls, exactly M of which are white. Let n balls be taken out from the box one by 

one without returning ( )n ʄ¢  balls. Then the probability that among these 

removed n balls there will be k white is 

 

).,...,1,0(),(, nk
C

CC
knP

n
N

kn
MN

k
M

MN ==
-
-

 
 

So, the general formula for calculation of the probability is 

 

m

n

km

mn

k

m

C

CC
ɸP

-

-Ö=)(

.
 

Example 13. Suppose that there are 7 books. How many ways 4 books can 

be chosen out of 7?  

Solution. 

ʉ
Ȧ

Ȧ Ȧ

Ȧ

ȦȦ
συȢ

.
 

 

Example 14. Suppose that 2 cards are drawn out from a well-shuffled deck 

of 36 cards. What is the probability that both of them are spades? 

Solution. The number of ways is n=36; of drawing out 2 cards from a well-

shuffled deck of 36 cards is ʉ . Since 13 of the 36 cards are spades, the number 

of ways m of drawing 2 spades is 
2

13ʉ . Thus, 
 

P(getting 2 spades)= πȟρςσψ. 

 

Example 15. Suppose that 3 people are selected at random from a group that 

consists of 6 men and 4 women. What is the probability that 1 man and 2 women 

are selected? 

Solution. The number of ways of selecting 3 people from a group of 10 is 
3

10C . One man can be selected in 
1

6C  ways, and 2 women can be selected in 
2

4C  

ways. By the fundamental counting principle, the number of ways of selecting 1 

man and 2 women is 
2

4

1

6 CC Ö . Thus, the probability that 1 man and 2 women are 

selected is 

ὖ
ẗ

. 
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Example 16. Lotto Game: guess "k numbers from n". For example, sport 

lotto 6 out of 49. What is the probability of getting the main prize? Indicate the 

number k. There is one favorable event in which there is main prize of the game. 

The number of all elementary events is equal to the number of possible samples of 

k numbers from n in order and without repeats, i.e. is equal to ὅ . Thus, the 

probability of a major winnings in a sport lotto is 

 

 
 

Theorem (General Addition Rule). If A and B are two events in a sample 

space S, then: 

)()()()( BAPBPAPBAP Æ-+=Ç . 

 

Example 17. Consider a pack of 52 playing cards. A card is selected at 

random. What is the probability that the card is either a diamond or a ten?  

Solution. Let A be the event {a diamond is selected} and B be the event {a 

ten is selected}. The probability that it is a diamond is 
52

13
)( =AP  since there are 13 

diamond cards in the pack. The probability that the card is a ten is 
52

4
)( =BP .  

There are 16 cards that fall into the category of being either a diamond or a 

ten: 13 of these are diamonds and there is a ten in each of the three other suits. 

Therefore, the probability of the card being a diamond or a ten is 
52

16
 not 

52

17

52

4

52

13
=+ . We say that these events are not mutually exclusive. We must ensure 

in this case not to simply add the two original probabilities; this would count the 

ten of diamonds twice - once in each category 

We used the addition law. This example 
52

13
)( =AP  and 

52

4
)( =BP . The 

intersection event AžB consists of only one member - the ten of diamonds - hence 

52

1
)( =ÆBAP . Therefore  

3077,0
52

16

52

1

52

4

52

13
)( ==-+=ÇBAP  

 

as we have already argued. 

Example 18. A card is drawn at random from a deck of 52 playing cards. 

What is the probability that it is an ace or a face card?  
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Solution. Let F={face card}, A={card is ace}. Then 

 

;
52

12
)( =FP                 

52

4
)( =AP . 

We have 

 

.3077,0
52

16
0

52

4

52

12
)()()()( ==-+=Æ-+=Ç AFPAPFPAFP  

 

Conditional probability. The probability of some random event A, 

generally, changes if it is already known that some other random event B has 

occurred. The probability A provided that B has already occurred with probability 

ὖὄ π, is denoted ὖὃȾὄ  and is called the conditional probability A to 

condition B. 

Example 19. If two dice were rolled at the same time. Let A be the 

phenomena "the sum of points ", B the phenomena "the even sum of points". If 

it is known that B happened, then for A there are 18 possible elementary events (for 

example, Ὡ  it is possible, but Ὡ  not); of which are favorable for A are 

Ὡ ȟὩ ȟὩ . Consequently, 

 
 

Example 20. There are two boxes. In the first there are 5 white and 5 black 

balls, in the second - 1 white and 9 black. The experience is about taking random 

ball from one of the boxes. Let B be the event "the pulled ball is white", ὃ - the 

event "the ball is taken out of the i-th box" (i=1, 2). Then  

 

ὖὄȾὃ ȟ          ὖὄȾὃ . 

 

Example 21. A manufacturer knows that the probability of an order being 

ready on time is 0,80 and the probability of an order being ready on time and being 

delivered on time is 0,72. What is the probability of an order being delivered on 

time, given that it is ready on time?  

Solution. Let R: order is ready on time; D: order is delivered on time. 

P(R)=0,80; P(R,D)=0,72. Therefore:  

 

.90,0
80,0

72,0

)(

),(
)/( ===

RP

DRP
RDP  

 

The conditional probability satisfies the following ratio checks: 
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    (5) 

 

   (6) 

Example 22. Pick ʘ Card from ʘ Deck. Suppose ʘ card is drawn randomly 

from ʘ deck and found to bʝ an ɸʩʝ. What is the conditional probability for this 

card to bʝ Spade ɸʩʝ? ɸ = Spade ɸʩʝ; ɺ = ʘn ɸʩʝ;  BAÆ = Spade ɸʩʝ. We have 

 

52/1)(;52/4)(;52/1)( =Æ== BAPBPAP . 

ʅʝnʩʝ, 

.
4

1

52/4

52/1
)/( ==BAP  

 

If they are resolved regarding ὖὃ᷊ὄ , then a multiplication rule is 

obtained: 

,  (7) 

 

that is, the probability of the product of two random events is equal to the product 

of the probability of the event by the conditional probability of the other, provided 

that the first event occurred.  

Example 23. Drawing ʘ Spade ɸʩʝ. Let ɸ - an ɸʩʝ; ɺ - ʘ Spade; BAÆ  - 

the Spade ɸʩʝ 

13/1)/(;52/13)( == BAPBP . 

ʅʝnʩʝ,  

.
52

1

52

13

13

1
)()/()( =Ö=Ö=Æ BPBAPBAP  

Example 24. Selecting students. ɸ statistics course has seven male and three 

female students. The professor wants to select two students at random to help her 

conduct ʘ research project. What is the probability that the two students chosen ʘrʝ 

female?  

Let ɸ - the first student selected is female; ɺ - the second student selected is 

female; BAÆ  - both chosen students ʘʛʝ female  

 

.9/2)/(;10/3)( == ABPAP  

ʅʝnʩʝ  
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.
15

1

10

3

9

2
)()/()( =Ö=Ö=Æ APABPBAP  

Example 25. A bag has 4 white cards and 5 blue cards. We draw two cards 

from the bag one by one without replacement. Find the probability of getting both 

cards white. 

Solution. Let the total numbers of cards be 5 + 4 =9. Let A = event that first 

card is white and B = event that second card is white. 

From question, 
9

4
)( =AP . Now )/()( ABPBP = , because the given events 

are dependent on each other. 
8

3
)( =BP . So, .

6

1

8

3

9

4
)( =Ö=ÆBAP  

 

Two random events A and B are said to be independent, if the 

implementation of one does not affect the probability of implementing the other, 

i.e. if 

ὖὃȾὄ ὖὃ,       (8) 

 

Then the multiplication rule has the form 

 

,     (9) 

 

i.e. the probability of the product of two independent events is equal to the product 

of their probabilities. Since formulas (8) and (9) are equivalent, the relation (9) is 

often used to define the concept of "independence of two random events". 

Random events ὃȟὃȟȣȟὃ  are called independent in aggregate if for each 

m and every m-combination ὭȟὭȟȣȟὭ , where ρ Ὥ Ὥ Ễ Ὥ ὲ 

 

ὖὃ ᷊ὃ ᷊ȣ᷊ὃ ὖὃ ᷊ὖὃ ᷊ȣ᷊ὖὃ  

 

Random events ὃȟὃȟȣȟὃ  are said to be pairwise independent if for 

arbitrary ὭȟὮ  Ὥ Ὦ ὃ and ὃ are independent. 

Independence in the aggregate follows pairwise independence, but not vice 

versa. 

The total probability. Suppose that a reliable event E can be represented as 

a sum of n pairwise incompatible events, i.e. 

 

Ὗ ὃẕὃẕȣẕὃ , 

 

where ὃ᷊ὃ ὠ at Ὥ Ὦ. Then for any random event B the relation 
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ὄ ὃ᷊ὄ ᷾ ὃ ᷊ὄ ᷾ȣ᷾ ὃ ᷊ὄ  

 

According to the axiom of additivity, it follows that 

. 

If we apply formula (7), we obtain 

.                                   (10) 
 

This formula is called the formula of total probability. 

Example 26. Given: three boxes of one type in which are 2 white and 6 black 

balls. In the 2nd box are: 1 white and 8 black balls. Letôs choose randomly the box 

and then a ball from there. Letôs the event denote by B "white picked up ball", its 

probability P(B). The chosen event "The box of 1st type" we denote by ὃ, and by 

ὃ  - "The box of 2nd type". Then  

 

ὄ ὄ᷊ὃ ᷾ ὄ᷊ὃ  

 

Since 

ὃ᷊ὃ ὠȢ 

 

Consequently, 

ὖὄ ὖὃ ϽὖὄȾὃ ὖὃ ϽὖὄȾὃ  

 

But  

 

ὖὃ ȟ     ὖὃ ȟ     ὖὄȾὃ ȟ  ὖὄȾὃ Ȣ 

 

Finally  

 
 

Example 27. Suppose that two factories supply light bulbs to the market. 

Factory X's bulbs work for over 7000 hours in 99% of cases, whereas factory Y's 

bu1bs work for over 7000 hours in 95% of cases. It is known that factory ʍ 

supplies 60% of the tota1 bu1bs available. What is the chance that ʘ purchased 

bulb will work for longer than 7000 hours?  

Solution. Applying the law of tota1 probability, we have: 
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=Ö+Ö= )()/()()/()( YYXX BPBAPBPBAPAP
 

 

974,0
1000

380594

10

4

100

95

10

6

100

99
=

+
=Ö+Ö= , 

where  

10

6
)( =XBP  is the probability that the purchased bulb was manufactured bʫ 

factory ʍ;  

10

4
)( =YBP  is the probability that the purchased bulb was manufactured bʫ 

factory Y;  

100

99
)/( =XBAP  is the probability that ʘ bu1b manufactured bʫ ʍ will work 

for over 7000 hours;  

100

95
)/( =YBAP  is the probability that ʘ bu1b manufactured bʫ Y will work 

for over 7000 hours.  

Thus, each purchased light bu1b has ʘ 97,4% chance to work for more than 

7000 hours.  

Example 28. ɸ disease called flu affects 3% of the population. There is ʘ test 

to detect flu, but it is not perfect. For people with flu, the test is positive 90% of the 

time. For people without flu the test is positive 40% of the time. Suppose ʘ 

randomly selected person takes the test and it is positive. What are the chances that 

ʘ randomly selected person tests positive?  

Solution. Let A represent ʘ positive test result, B not having flu, C having 

flu, then we obtain ʈ(B)=0,97; ʈ(C)=0,03. ʊhʝ test specifications tell us: 

P(A/B)=0,4 and P(A/C)=0,9. We have 

 

=Æ+Æ= )()()( CAPBAPAP  

 

ὖὄ ẗὖὃȾὄ ὖὅ ẗὖὃȾὅ πȟωχẗπȟτ πȟπσẗπȟω πȟτρυȢ 

 

Example 29. In an experiment on human memory, participants have to 

memorize a set of words (1B ), numbers )( 2B  and pictures ( 3B ). These occur in 

the experiment with the probabilities  

 

.1,0)(;4,0)(;5,0)( 321 === BPBPBP  
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Then participants have recall the items (where A is the recall event). The 

results show that  

 

.1,0)/(;2,0)/(;4,0)/( 321 === BAPBAPBAP  

 

Compute P(A), the probability of recalling an item. By the theorem of total 

probability:  
 

.29,01,01,02,04,04,05,0

)/()()/()()/()(

)/()()(

332211

1

=Ö+Ö+Ö=

=Ö+Ö+Ö=

=Ö=ä
=

BAPBPBAPBPBAPBP

BAPBPAP
k

i
ii

 

  

The term law of total probability is sometimes taken to mean the law of 

alternatives, which is ʘ special case of the law of tota1 probability applying to 

discrete random variables. 

 

Bayes formula.  Suppose that the premises of the law of total probability are 

satisfied. Then we can calculate the probability of the event ὃ  provided, that 

event B has been occurred. For this purpose, the Bayesian formula, or the 

hypothesis probability formula could be used 

 

.          (11) 

 

Example 30. The same experiment as it was described in Example 26. Let 

the white ball be removed. What is the possibility that it is removed from the 1st 

type box? 

 
 

Example 31. While watching a game of hockey in the stadium, you observe 

someone who is clearly supporting Swifts in the game. What is the probability that 

they were actually born within 50 kilometers of Almaty?  

Solution. Assume that:  



17 

 

- the probability that a randomly selected person in a typical local bar 

environment born within 50 kilometers of Almaty is 1/20, and 19/20;  

- the chance that a person born within 50 kilometers of Almaty actually 

supports United is 7/10;  

- the probability that a person not born within 50 kilometers of Almaty 

supports Swifts with probability 1/10 .  

Define  

- B - event that the person is born within 50 kilometers of Almaty,  

- U - event that the person supports Swifts.  

We want P(B/U). By Bayesô Theorem,  

 

=
Ö+Ö

Ö
=

Ö
=

)()/()()/(

)()/(

)(

)()/(
)/(

BPBUPBPBUP

BPBUP

UP

BPBUP
UBP

 
 

.269,0
20

7

20

19

10

1

20

1

10

7
20

1

10

7

º=

Ö+Ö

Ö

=  

 

Example 32. 15% of a company's employees are mathematics and 20% are 

physics. 80% of the mathematics and 40% of the physics hold a managerial 

position, while only 20% of non-mathematics and non-physics have a similar 

position. What is the probability that an employee selected at random will be both 

a mathematic and a manager?  

 

ὖάὥὸὬὩάὥὸὭὧȾάὥὲὥὫὩὶ
πȟρυẗπȟψ

πȟρυẗπȟψ πȟςẗπȟτ πȟφυẗπȟς
πȟσφσφȢ

 

 

Example 33. The entire output of ʘ factory is produced ʦn three machines. 

Three machines account for 20%, 30%, and 50% of the output, respectively. The 

fraction of defective items produced is this: for the first machine - 5%; for the 

second machine - 3%; for the third machine - 1%. If an item is chosen at random 

from the total output and is found to bʝ defective, what is the probability that it was 

produced bʫ the third machine?  

Solution. Let iA  denote the event that ʘ randomly chosen item was made bʫ 

the i-th machine (for i=1,2,3). Let ɺ denote the event that ʘ randomly chosen item 

is defective. Then, we are given the following information:  

 

.5,0)(;3,0)(;2,0)( 321 === APAPAP  
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If the item was made bʫ machine 1A , then the probability that it is defective 

is 0,05; that is, .05,0)/( 1 =ABP  Overall, we have  

 

.01,0)/(;03,0)/(;05,0)/( 321 === ABPABPABP  

 

ʊʦ answer the original question, we first find ʈ(ɺ). That can bʝ done in the 

following way:  

 

ὖὄ ὖὄȾὃ ẗὖὃ  

πȟπυẗπȟς πȟπσẗπȟσ πȟπρẗπȟυ πȟπςτȢ 

 

Hence 2,4% of the total output of the factory is defective. Wʝ are given that 

ɺ has occurred, and we want to calculate the conditional probability of 3A . ɺʫ 

Bayes' theorem,  

 

.
24

5

024,0

50,001,0

)(

)()/(
)/( 33

3 =
Ö

=
Ö

=
BP

APABP
BAP  

 

Given that the item is defective, the probability that it was made bʫ the third 

machine is only 5/24. Although machine 3 produces half of the total output, it 

produces ʘ much smaller fraction of the defective items.  

Hence the knowledge that the item selected was defective enables us to 

replace the prior probability 2/1)( 3 =AP  bʫ the smaller posterior probability 

.24/5)/( 3 =BAP   

Once again, the answer can bʝ reached without recourse to the formula bʫ 

applying the conditions to any hypothetical number of cases. For example, in 

100,000 items produced bʫ the factory: 20,000 will bʝ produced bʫ Machine ɸ; 

30,000 bʫ Machine ɺ; and 50,000 bʫ Machine ʉ. Machine ɸ will produce 1000 

defective items, Machine ɺ - 900 and Machine ʉ - 500. Of the total 2400 defective 

items, only 500, or 5/24 were produced bʫ Machine ʉ.  

 

The Bernulli formula.  

 

mnmm

nn qpCmP -=)( . 

Here, 
m

nC  denotes the number of combinations of n elements taken m at a 

time. For large n, the calculation using this formula becomes difficult.  
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We can use the Bernulliôs formula for independent events if probability of 

events occurring are 

1) Less then m times 

 

)1(...)1()0()( -+++=< ʪʈʈʈmʈ nnn . 

 

2) More than m times 

 

)(...)2()1()( nʈmʈmʈmʈ nnn +++++=> . 

 

3) No more then m times 

 

)(...)1()0()( ʪʈʈʈmʈ nnn +++=¢ . 

 

4) At least m times 

 

)(...)1()()( nʈmʈmʈmʈ nnn ++++=² . 

 

5) At least once 

)0(1)0( nn ÐmÐ -=¸ . 

 

Example 34. Calculate the probability of rolling 4 on a dice exactly 5 times 

in 25 trials. 

Solution. We have the following:  

n = total trials = 25;  

k = total successes = 5;  

nïk = total failures = 20; 

p = 1/6 = 0,167;     q = 5/6 = 0,833 
 

.13053
!20!5

!255
25 ==C  

 

Therefore, probability will be: 
 

.17844,0833,0167,013053)5,25( 2052055
25 =ÖÖ=ÖÖ= qpCP  

 

Thus, the probability is 0,17844. This way, we can calculate the probability 

of any event provided we know the number of trials and the probability of the 

event occurring in a single trial. 
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Example 35. A student is writing an exam of multiple choice questions. It 

contains a total of 15 questions, each of which has 4 possible answers. What is the 

probability that student gets exactly 11 correct answer? 

Solution. Given that:  

n = 15;  

p = Probability of success = 1/4 = 0,25;  

q = Probability of failure = 1 ï 0,25 = 0,75;  

k = 11.  

The probability of exactly 11 correct answers: 

 

0003089,075,025,0)11,15( 41111
15 =ÖÖ=CP . 

 

Example 36. What is the probability of getting heads exactly 3 times if you 

flip ʘ fair coin 6 times?  

We have k=3 number of successes; n=6 number of trials; ʨ=0,5 probabi1ity 

of success; 5,05,011 =-=-= pq  probabi1ity of failure.  

Probability of getting 3 heads: 

 

3125,0125,0125,0205,05,0)3( 3633
6 =ÖÖ=ÖÖ== -CXP . 

 

Example 37. The probability of a boy's birth is 0,515. How great is the 

probability that among 10 randomly chosen newborns there will be 6 boys?  

The assumption of independence can be considered as fulfilled. Thus, for the 

desired probability we have 

 

.2167,0)485,0()515,0()6,10()( 466
10 º== CPAP  

 

Example 38. You are taking a 10 questions multiple choice test. If each 

question has four choices and you guess on each question, what is the probability 

of getting exactly 7 questions correct? 

Solution.  

n = 10;  

k = 7;  

n ï k= 3;  

p= 0,25 - probability of guessing the correct answer on a question;  

q = 0,75 - probability of guessing the wrong answer on a question. 
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.0031,075,025,0

)107(

377
10 =ÖÖ=

=

C

questionsofoutguessescorrectP

 

 

Example 39. A student takes a multiple choice quiz with 4 possible answers 

to each of the 10 questions. If he guesses randomly, find the:  

(a) probability he scores 7 out of 10;  

(b) probability he scores 8 or better;  

(c) probability he fails (6 or less). 

Solution. 

(a) probability he scores 7 out of 10: 

 

003,075,025,0)7,10( 377
10 =ÖÖ=CP ; 

 

(b) probability he scores 8 or better: 

 

.00042,075,025,075,025,075,025,0

)8()9()10()8(

288
10

199
10

01010
10 =ÖÖ+ÖÖ+ÖÖ=

=++=²

CCC

PPPP
; 

 

(c) probability he fails (6 or less): 

 

.9966,000342,01]00042,075,025,0[1

)]8()7,10([1)6(

377
10

=-=+ÖÖ-=

=²+-=¢

C

PPP

 

 

  



22 

 

RANDOM  VARIABLE  

 

The real variable, which, depending on the outcome of the experiment, i.e. 

depending on the case, takes different values, is called a random variable. 

Let X be a random variable. A distribution function Ὂὼ of a random 

variable X is called a function 
 

 Ὂὼ ὖὢ ὼ.    (12) 
 

The value of the distribution function at a point ὼ is equal to the probability 

that a random variable takes a value less than ὼ. In probability theory, a random 

variable is completely characterized by its distribution function, i.e. can be 

considered as given if its distribution function is given. Using the distribution 

function, you can specify the probability that a random variable falls into a given 

half-open interval 

.    (13) 

 

The distribution function Ὂὼ of an arbitrary random variables has the 

following properties: 

 

1)  

2) Ὂὼ monotonically does not decrease, i.e. in cases where ὼ ὼ, takes 

place equality Ὂὼ Ὂὼ . 

3) Ὂὼ is continuous from the left. 

 

Discrete random variables. A random variable X is called discrete if it can 

take only a finite or countable set of values. Thus, it is characterized by the values 

ὼȟὼȟȣ it can take, and the probabilities ὴ ὖὢ ὼ  with which it takes these 

values and which must satisfy the condition Вὴ ρ. 

A one-to one correspondence of sets ὼ onto a set ὴ is considered as a 

function of the probability of a discrete random variable. For a distribution function 

of a discrete random variable we have 

 

Ὂὼ В ὴ      (14) 

 

The graphic representation of the series of the distribution of a discrete 

random variable is called the polygon of the distribution. The summation is implied 

over all i for which ὼ ὼ. Thus, F(x) is a step function with jumps in height ὴ at 

the points ὼ (Fig. 1). 
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Figure 1. 

 

Example 40. A discrete random variable X is set next distribution 

 

ʍ 0 10 20 30 40 50 

ʈ 0,05 0,15 0,3 0,25 0,2 0,05 

 

Find: a) distribution function F(x); b) the math expectation, dispersion. 

Solution: (a) for a discrete random variable distribution function F(x) to be 

for all values of i, that ὼ ὼ according to the formula: 

 

;)()()( ä ä
< =

===<=

xx xx

ii

i i

xXPpxXPxF  

 

If x Ò 0, then F(x) = P(X < 0) = 0; 

 

If 0 < x Ò 10, then F(x) = P(X = 0) = 0,05; 

 

If 10 <x Ò20, then  

 

F(x) = P(X = 0) + P(X = 10) = 0,05 + 0,15 = 0,2; 

 

If 20 <x Ò 30, then 

 

F(x) = P(X = 0) + P(X = 10) + P(X = 20) =  

= 0,2 + 0.3 = 0,5; 

 

If 30 <x Ò 40, then 

 

F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) =  

= 0,5 + 0,25 = 0,75; 

 

If 40 < x Ò 50, then 

 

F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) +  

+ P(X = 40) =0,75 + 0,2 = 0,95; 

 

If x < 50, then 

 

F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) +  

+ P(X = 40) + P(X = 50) = 0,95 + 0,05 = 1; 
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In this way,  

î
î
î
î

í

î
î
î
î

ì

ë

>

¢<

¢<

¢<

¢<

¢<

¢

=

50,1

5040,95.0

4030,75.0
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(b) we find the math expectation and the dispersion. The math expectation 

for discrete random variable is: 

 

ʄʍ ʭὴ  

 

πẗπȟρυρπẗπȟρυςπẗπȟσ σπẗπȟςυτπẗπȟς υπẗπȟπυ ςυȟυȢ 

 

The dispersion of the random variable X is obtained by the formula  

 

D(X) = [ ]22 )()( ʍʄʍʄ - . 

We have 

 

.80505,0502,040

25,0303,02015,01005,00)(

22

2222

=Ö+Ö+

+Ö+Ö+Ö+Ö=XD
 

 

Example 41. Find the distribution of a discrete random variable X, which has 

only two possible values ὼ and ὼ, and ὼ ὼ, knowing the expectation 

M(X)=0,24, the probability ὴ πȟφ of possible value ὼ. 

Solution: The sum of the probabilities of all possible values of a discrete 

random variable is equal to one, so the probability that X takes the value ὼ is 

equal to 1 - 0,6 = 0,4. Then the law of the distribution of X is: 

 

ʍ x1  x 2  

ʈ 0,6 0,4 
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To find ὼ and ὼ be two equations, using the known values and formulas 

expectation and variance. To do this, write the law of distribution of X2 .  

 

ʍ2  x 2

1
 x 2

2
 

ʈ 0,6 0,4 

 

Thus,  

ὓὢ πȟφϽὼ πȟτϽὼ 

and 

Ὀὢ πȟφϽὼ πȟτϽὼ 

 

Hence, we obtain the system: 

 

í
ì
ë

=-+

=+

24,04,14,06,0

4,14,06,0

22

2

2

1

21

ʭʭ

ʭʭ
. 

 

Solving this system of equations, find two solutions: 

 

ὼ ρȟὼ ς     and     ὼ ρȟψ  ὼ πȟψ. 

 

According to the problem ὼ ὼ, so the problem satisfies only the first 

solution ὼ ρȟὼ ς. Seeking the law of distribution of a discrete random 

variable X is: 

 

ʍ 1 2 

ʈ 0,6 0,4 

 

The event indicator. If A is some random event, where ὖὃ ὴ. Random 

value 

 
 

is called the indicator A (the random variable characteristic). The possible values 

are 0 and 1, the relevant probabilities 

 

 
 

Binomial distribution. Let some experiment be repeated n times and 
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individual experiments of this series do not depend on each other. Let event A 

occur or not occur in each experiment, and the probability of the realization in a 

separate experiment does not depend on the number of the experiment and is equal 

to p. Let - be the number of occurrences of event A in such a series of n 

experiments. Obviously, the possible values  of a random variable are 

numbers 0,1,2,...,n. Probabilities 

 

 
 

are calculated by binomial law 

 

.  (15) 

 

A random variable is called binomially distributed with parameters n and p, 

if possible values 0,1,2,...,n it takes probabilities ὖὲȟὯ with the given formulas 

(15). The parameters n and p completely determine the binomial distribution.  

Figure 2 shows the "polygons" of binomial distributions for n=20 and 

various p. The corresponding ὖὲȟὯ are plotted along the ordinate and connected 

by a broken line. Since from ὖὲȟπȟ ὖὲȟὯ can be easily calculated from the 

following recurrence formula: 

 

     (16) 

 

 
Figure 2. 

 

Example 42. The probability of a boy's birth is equal to 0,515. How great is 

the probability that out of 10 randomly chosen newborns there will be 6 boys? The 

assumption of independence can be considered as fulfilled. Thus, for the required 

probability we have 
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Example 43. There are N balls in the box, where M are white. From the box, 

the ball was taken out n times and after registering returned to the box again. What 

is the probability of the event that the white ball was registered k times? This 

probability ὖὲȟὯ is calculated by using the binomial law (15): 

 

ὖὲȟὯ ὅ ρ            Ὧ πȟρȟȣȟὲ  (17) 

 
 

The binomial law describes in the most general form the implementation of 

runtime in a sample of n return. 

Example 44. If the probability of obtaining a defective product is 0,01. What 

is the probability that among a hundred products there will be not more than three 

defective ones? According to the binomial law and the law of addition, we get that 

 

 
 

Example 45. Your nʘmʝ is Asan and you are an expert penalty goal shooter. 

Your skill has been improved for the past 10 years, and now you are as good as 

you will ever bʝ. Your success rate has been measured at 80%. Thus, p=0,8 and 

q=0,2. Yʦu take n = 6 shots ʦn goal, so the possible values of X (the number of 

successes) are 0,1,2,3,4,5,6. Here is the probability for each value of X:  

 

000064,0000064,0112,08,0)0( 600
6 =ÖÖ=ÖÖ== CXP ; 

 

001536,000032,08,062,08,0)1( 511
6 =ÖÖ=ÖÖ== CXP ; 

 

01536,00016,064,0152,08,0)2( 422
6 =ÖÖ=ÖÖ== CXP ; 

 

08192,0008,0512,0202,08,0)3( 333
6 =ÖÖ=ÖÖ== CXP ; 

 

24576,004,04096,0152,08,0)4( 244
6 =ÖÖ=ÖÖ== CXP ; 

 

393216,02,032678,062,08,0)5( 155
6 =ÖÖ=ÖÖ== CXP ; 
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262144,01262144,062,08,0)6( 066
6 =ÖÖ=ÖÖ== CXP . 

 

Putting them all together gives the probability distribution for ʍ:  

 

x 0 1 2 3 4 5 6 

ʈ(ʍ=ʭ) 0,000064 0,001536 0,01536 0,08192 0,24576 0,393216 0,262144 

 

We ʩan use the probability distribution to find the probability that X is in ʘ 

given range bʫ adding the individual probabilities.  

 

Probability of at least 5 

successes  65539,0262144,0393216,0

)6()5()65(

=+=

=+=¢¢ PPXP
 

or ʘ 65,5% chance. 

 

Probability of at most 2 

successes 01696,001536,0001536,0000064,0

)2()1()0()20(

=++=

=++=¢¢ PPPXP
 

or ʘ 1,7% chance. 

 

Probability of at least 3 

successes 98304,001696,01

))2()1()0((1)63(

=-=

=++-=¢¢ PPPXP
 

i.e. 1-Probability of at most 2 successes. 

 

Since "at most 2 

successes" and "ʘt least 3 

successes" are 

complementary events 

 

=1-0,01696=0,98304. 

 

We used the previous answer, and that was ʘ easier than adding  

 

ʈ(ʍ = 3),    P(X = 4),    ʈ(ʍ = 5)    and    ʈ(ʍ = 6). 

 

Here is the probability distribution again: 

 

x 0 1 2 3 4 5 6 

ʈ(ʍ=ʭ) 0,000064 0,001536 0,01536 0,08192 0,24576 0,393216 0,262144 

 

Hypergeometric distribution. In the box there are N balls, where M are 

white. Letôs take ὲ ὓ  balls one by one without returning (or simultaneously, 
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which is the same thing). Then the probability that among these n balls removed 

there will be k white ones is 

 

   (18) 

 

A random variable is called hypergeometric distribution, if possible values 

0,1,...,n it takes with probabilities ὖȟ ὲȟὯ defined by the formula (18). The 

numbers N, M, n are the distribution parameters. 

The hypergeometric distribution describes the implementation of the 

characteristic in the sample without a return. If N is very large in comparison with 

n, then it does not matter whether the balls return back or not, and formula (18) can 

be approximately replaced by formula (17) of the binomial distribution. 

 

Poisson distribution. A random variable is said to be Poisson distributed if it 

takes a countable set of possible values 0, 1, 2, ... with probabilities 

 

    (19) 

 

The value ‗ is the parameter of distribution. 

The Poisson distribution can be used as a good approximation of the 

binomial distribution if n is large and p is small. Then, in quality ‗ need to take 

ὲὴ, that is ‗ ὲὴ . 
Example 46. The car traveled 100 000 km. Let X be the number of punctures 

of the tire at this distance. Then X can be regarded as a random variable distributed 

according to Poisson's law (with a suitable ‗), that is, the probability of three 

punctures of the bus is 

. 

 

Example 47. Let's consider Example 44. We have n=100, p=0,01. Thus 

 

, 
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which gives a good match with the exact value, but it is calculated much faster. 

The Poisson distribution is tabulated for various ‗ (Application 1). 

Example 48. Let the probability of obtaining a defective product is 0,01. 

What is the probability that among a hundred products there will be no more than 

three defective ones? 

We have n=100, p=0,01. Thus 101,0100 =Ö==npl . 

 

,9810,0
6

1

2

1
11

1

!3

1

!2

1

!1

1

!0

1
)( 1

3
1

2
1

1
1

0

=ö
÷

õ
æ
ç

å
+++=

=+++= ----

e

eeeeAP

 

 

which gives a good match with the exact value, but it is calculated much faster. 

Example 49. ʆn ʘ particular river, overflow floods occur once every 100 

years ʦn average. Calculate the probability of k=0,1,2,3,4,5 or 6 overflow floods 

in ʘ 100-year interval, assuming the Poisson model is appropriate.  

As the average event rate is one overflow flood per 100 years, 1=l :  

 

!

1

!
)100(

k

e

k

e
yearsinfloodsoverflowkP

kk lll --

== ; 

 

368,0
1!0

1
)1000(

11

====
-- ee

yearsinfloodsoverflowkP
k

; 

 

368,0
1!1

1
)1001(

11

====
-- ee

yearsinfloodsoverflowkP
k

; 

 

.184,0
2!2

1
)1002(

112

====
-- ee

yearsinfloodsoverflowkP
 

 

ʊhe table below gives the probability for 0 to 6 overflow floods in ʘ 100 

year period.  

 

k 0 1 2 3 4 5 6 

P(k) 0,368 0,368 0,184 0,061 0,015 0,003 0,0005 
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 Continuous random variables. A random variable is called continuous if 

its distribution function (the integral distribution function) can be represented in 

the form 

.     (20) 

The function Ὢὼ  is called the distribution density. If 

 

, 

 

then the condition must be fulfilled 

 

.     (21) 

 

With a given probability density, due to the fact that 

 

 
 

and (20), the probability that a random variable falls within a given interval is 

equal to (Fig. 3) 

. 

 

 
 

Figure 3. 

 

The probability P(X=a), i.e. the probability that a continuous random 

variable is equal to a given real number, is always equal to 0. Note that it does not 

follow from the equality P(A)=0 that A is an impossible event, although P(V)=0. 
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Uniform distribution. A random variable is called uniformly distributed on 

[a,b] if its probability density on the [a,b] is constant, and outside [a,b] is equal 

to 0 (Fig. 4). 

 

 
Figure 4. 

Since 

, 

then 

 
 

Uniform distribution on [a,b]: 
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. 

Normal distribution (Gaussian distribution). A random variable is called 

normal distribution if it has following probability density 

 

,   (23) 

where a and „ are the parameters of distribution. 

Function (23) is a bell-shaped curve. The parameter a is the maximum point 

through which the symmetry axis passes, the parameter „ is the distance from this 

axis to the inflection point. 
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If „ is small, the curve is high and pointed; If „ is large, it is wide and flat. 

Figure 5 shows the normal distribution for ὥ π and different „. 

 

 
 

Figure 5. 

 

If the random variable X has a normal distribution with parameters a and „, 

then we say that X distributed normally according to law ὔὼȟὥȟ„, write as ὢᶰ

ὔὼȟὥȟ„ . Function 

 

 
 

is called the density of a normalized and centered normal distribution. The 

probability density •ὼ and the corresponding distribution 

 

ˡὼ •ὸὨὸ 

 

tabulated (Application 2). The function ʌ(ʭ) is often called the Gaussian error 

integral 

 

ˡ ὼ
Ѝ
᷿Ὡ ȾὨὸ, 

 

ˡὼ ˡ ὼ . 

 

The special significance of the normal distribution in theory and practice is 

based to a large extent on the central limit theorem. 
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Example 50. Find the probability of getting a given interval (12,14) normally 

distributed random variable, if you know the expectation of a = 10 and standard 

deviation s= 2. 

Solution: we use the formula for the solution: 
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ʘ
ʌ
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ʌXP

 
 

Substituting  2,10,14,12 ==== sba ʘ  obtain:  

 

ʈ(12<ʍ<14) = ʌ(2) - ʌ(1). 

 

From the Application 2 find the values of the functions  

 

ʌ(2) = 0,4772    and    ʌ(1) = 0,3413, 

 

then the desired probability P(12<ʍ<14) = 0,1359. 

 

Exponential distribution. A random variable is called exponentially 

distributed if it has the following probability density 

 

Ὢὼ ‗Ὡ     ὥὸ  ὼ πȟ
π        ὥὸ  ὼ π

 

 

where ‗ the distribution parameter. 

Example 51. The service life of the light bulb can be viewed with good 

approximation as an exponentially distributed value. Fig. 6 shows the probability 

density of the exponential distribution with . 

 

 
 

Figure 6. 
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MOMENTS OF DISTRIBUTION  

 

Discrete time case. Let X be a discrete random variable with possible values 

of ὼȟὼȟȣ and ὴ ὖὢ ὼ  . 

The number 

 
in the case of absolute convergence of the series is called the i-th initial moment of 

the random variable X (or its distribution) (i=1,2,...). 

The number 

 
 

is called the i-th central moment of X. 

Of particular importance are the first initial moment ὺ and the second 

central moment ‘ . 

Mathematical expectation. The first initial moment 

 

 
 

is called the mathematical expectation of X and is denoted by M(X).  

The expectation determines the position of the distribution center in the 

following sense: if we assume ὴ as the masses placed at the points ὼ of the real 

axis, then M(X) is the coordinate of the center of gravity of this system. 

Properties of mathematical expectation. 

1) The mathematical expectation of the constant C (which can be regarded 

as a discrete random variable with one possible value a, which it takes with 

probability 1) is equal to this constant: 
 

ʄ(ʉ)=ʉ,     C - const. 
 

2) The mathematical expectation of a sum is equal to the sum of 

mathematical expectations: 

 

.    (24) 
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3) The mathematical expectation of a product of constant value by a random 

variable is equal to the product of the constant by the mathematical expectation of 

a random variable: 
 

ὓὥὢ ὥὓὢ . 
 

4) The mathematical expectation of the product of two independent random 

variables is equal to the product of their mathematical expectations 

 

.   (25) 

 

A binomial distribution with parameters n, p: 

 

.   (26) 

 

Hypergeometric distribution with parameters N, M, n: 

 

.    (27) 

 

Poisson distribution with parameter ‗: 

 

.   (28) 

 

Thus, the parameter ‗ here has a meaning of mathematical expectation. 

Dispersion. The second central moment is called the dispersion of the 

random variable X and is denoted by D(X), that is, 
 

.       (29) 
 

To calculate the dispersion, the following formula is often useful: 
 

       (30) 
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The square root of the dispersion is called the spread, or the standard 

deviation, or the mean square deviation, and is denoted by „: 
 

.     (31) 
 

The value „ (or D(X)) is the measure of spread-out distribution with respect 

to the mathematical expectation. 

Dispersion properties. 

1) The dispersion of a constant is zero: Ὀὅ πȢ 
2) The dispersion of a product of a constant value by a random variable is 

equal to the product of the square of a constant value by the dispersion of the 

random variable: 

 
 

3) The dispersion of the sum of the constant C and the random variable is 

equal to the dispersion of the random variable: 
 

. 
 

4) The dispersion of the sum of two independent random dispersions is equal 

to the sum of the dispersions of these quantities: 
 

 
 

Binomial distribution 

  (32) 

 

„ ὲὴήȢ      (33) 

 

Hypergeometric distribution: 
 

   (34) 
 

Poisson distribution: 
 

    (35) 
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Continuous case. Let X be a continuous random variable with probability 

density Ὢὼ. Then 

     (36) 

 

is called, in the case of absolute convergence of the integral, the i-th initial moment 

of the random variable X (i=1, 2, ...). 
 

 
 

is called the i-th central moment of the random variable X. 

The mathematical expectation. First initial moment 
 

 
 

is called the mathematical expectation of the random variable X. 

The mathematical expectation ὓὢ gives central position of gravity of the 

mass distribution, which is defined by the "mass distribution density". 

The mathematical expectation in the continuous case has the same properties 

1)-4), which were noted for the discrete case. 

 Uniform distribution on [a,b]: 
 

. 
 

Normal distribution on ὔὼȟὥȟ„ȡ  
 

. 
 

Consequently, the parameter a has the meaning of a mathematical 

expectation. 

Exponential distribution: 
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. 
  

Dispersion. The second central moment  
 

   (38) 
 

is called the dispersion of the random variable X. The value Ὀὢ „ is called 

the spread, or the standard deviation, or the mean square deviation of the random 

variable X. The following formula 
 

.    (39) 
 

The dispersion in the continuous case has the same properties 1)-4), which 

were noted for the discrete case. 

Uniform distribution on [a,b]: 
 

. 
 

Normal distribution on ὔὼȟὥȟ„: 
 

. 
 

Thus, the normal distribution is completely determined by specifying the 

mathematical expectation and the standard deviation. 

Example 33. Exponential distribution: 

. 
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RANDOM VECTORS  

(MULTIDIMENSIONAL RANDOM VALUES)  

 

A combination ὢȟὢȟȣȟὢ  of random variables is called n-

dimensional random vector. Such a random vector can be characterized by its n-

dimensional distribution function: 

 

.         (40) 

 

A function Ὂὼȟὼȟȣȟὼ  is often also called a vector distribution 

ὢȟὢȟȣȟὢ  or a joint distribution of variables ὢȟὢȟȣȟὢ . If we consider 

the variables ὢȟὢȟȣȟὢ  as the coordinates of a point in n-dimensional 

Euclidean space, then the position of the point ὢȟὢȟȣȟὢ   depends on the 

case, and the value of the function Ὂὼȟὼȟȣȟὼ   is the possibility that the 

point is in a half-open parallelepiped 

 

 
 

with edges parallel to the axes. The probability that point turns out in a 

parallelepiped  is determined by formula 

 

  (41) 

 

Here 

, 

 

where , and all the rest ὧ ὦ. 

 

For a two-dimensional random vector in particular we get 
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Properties of the n-dimensional distribution function. 

  1) 

,          

 

2) Ὂὼȟὼȟȣȟὼ  monotonically does not decrease in each variable. 

3) Ὂὼȟὼȟȣȟὼ  continuous on the left to each variable.  

4) For arbitrary 

, 
 

the right-hand side of (41) is nonnegative.  

Discrete random vectors. A random vector ὢȟὢȟȣȟὢ  is called 

discrete if all its components are discrete random variables. If ὼ     Ὧ ρȟςȟȣ   

are the possible values of the j-th component, then the probability function 

ὴȟȟȣȟ   the vector ὢȟὢȟȣȟὢ  is defined as follows: 
 

. 
 

The distribution function has a fair ratio 
 

.        (42) 

 

Summation is made for all Ὥ, for which ὼ ὼ, etc. 

 Polynomial distribution. Let in some experiment there always be one of the 

pairs of incompatible events ὃȟὃȟȣȟὃ . Let ὖ ὖὃ . As ὃ᷾ὃ ᷾

ȣ᷾ὃ Ὗ and ὃ᷊ὃ ὠ in Ὥ Ὦ, then 

 

 
 

Let the experiment be performed n times, and the some of that experiments 

remain independent. Let us denote ὢ the number of realizations ὃ Ὥ ρȟςȟȣȟὯ 

in n experiments. Then each of the random variables ὢ can only take a finite set 
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πȟρȟςȟȣȟὲ of values. Thus, the vector ὢȟὢȟȣȟὢ   is a discrete random vector. 

For its probability function we have 
 

,       (43) 
 

where Ὥ Ὥ Ễ Ὥ ὲ. 

A random vector with probability function (43) is called polynomially 

distributed. 

Continuous random vectors. A random vector is called continuous if its 

distribution function can be represented in the form 

 

Ὂὼȟὼȟȣȟὼ ȣ Ὢὸȟȣȟὸ ὨὸȣὨὸ 

 

Ὢὼȟὼȟȣȟὼ is called the density of the distribution of a vector ὢȟὢȟȣȟὢ  

or also by the joint density of quantities ὢȟὢȟȣȟὢ . The probability that a 

random vector ὢȟὢȟȣȟὢ  is in the domain G of an n-dimensional space, can 

be written as follows 

.         (44) 

Therefore, the density must satisfy 

 

᷿ ȣ᷿ Ὢὸȟȣȟὸ ὨὸȣὨὸ ρ.   (45) 

 

Uniform distribution. Vector ὢȟὢȟȣȟὢ  is called distributed uniformly 

in the domain G, if it has a density that is constant in G and equal to 0 outside of G. 

This constant must be equal to , where ὠὋ is the volume of the domain G. 

Normal distribution. A vector ὢȟὢȟȣȟὢ  is called normally distributed 

if it has a density of the form 
 

.           (46) 
 

Here Q is some positive definite quadratic form the 

constants, the constant C can be calculated from the condition (45). In the case 

n=2, the density of the normal distribution can be provided to the following form 

(Fig. 8). 
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Figure 8. 

 

   (47) 

 

Boundary distributions. Let Ὂὼρȟὼςȟȣȟὼὲ  be the distribution function 

of a random vector ὢȟὢȟȣȟὢ . Then 

 

, 

 

where ὧ ὼȟὧ ὼȟȣȟὧ ὼ , and all the others ὧ Њ is called 

the k-dimensional boundary distribution Ὂ ὼρȟὼςȟȣȟὼὲ . It is a function of 

the distribution of a k-dimensional random vector ὢὭρȟὢὭςȟȣȟὢὭὯ . In particular, 

when Ὧ ρ the distributions of individual components are obtained: 

 

. 

 

In the discrete case, the probability function of the k-dimensional boundary 

distribution is obtained by summing over indices which numbers are different from 

ὭȟὭȟȣȟὭ. In the continuous case, the density of the boundary distribution is 

obtained by integrating over variables which numbers are different from 

ὭȟὭȟȣȟὭ. 

The total number of k-dimensional boundary distributions is ὅ . 
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Example 52. Suppose we are given a two-dimensional discrete random 

variable ὢȟὢ  with a probability function 

 

. 

 

Then the probability functions of the individual components are obtained as 

boundary distributions 

 

 
 

Example 53. Suppose we are given a three-dimensional random continuous 

quantity with density  Ὢὼρȟὼςȟὼσ . Then, for example, the vector density 

ὢȟὢ  is obtained as a two-dimensional boundary distribution: 

 

Ὣὼρȟὼς ᷿ Ὢὼρȟὼςȟὼσ
Њ
Њ

Ὠὼσ. 

 

The vector density 3th components is obtained as boundary distributions:  

 

Ὤὼσ ᷿ ᷿ Ὢὼρȟὼςȟὼσ
Њ
Њ

Ὠὼρ
Њ
Њ

Ὠὼς. 

 

Moments of a multidimensional random variable. Of particular interest 

are the first and second moments. If a random vector ὢȟὢȟȣȟὢ  is discrete, 

then the numbers 

   (48) 

 

are called the first initial moments ὢȟὢȟȣȟὢ . In the continuous case, the 

first initial moments are given by 

 

,  (49) 

 

where ὺ - are the mathematical expectations of the individual components 

ὺ ὓὢ . 
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The second initial moments ὺ  and the second central moments ‘  are 

determined as follows: 

Discrete case 

,     (50) 

 

.   (51) 

 

Continuous case 

,   (52) 

 

.  (53) 

 

It is said that the corresponding moments exist if the right sides of (48)-(53) 

converge absolutely. We have 

 

, 

 

 
 

The values ‘  are equal to the variances of the individual components: 

 

. 

 

The quantity ‘ ὧέὺὢȟὢ  is called the covariance (correlation 

moment) of random variables ὢȟὢ  and is denoted ὧέὺὢȟὢ . The matrix 

‘ὮὯȟ ȟȣȟ
    is called the covariance matrix (correlation). Parameter 

 


