Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра Электроники

  

 

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА АНАЛОГОВЫХ УСТРОЙСТВ 1

Конспект лекций

для студентов специальности 5В071900- Радиотехника, электроника и телекоммуникации

 

 

 

 

Алматы 2011 

Cоставители: А.Т.Ибраев, А.М.Даирбаев, У.К.Дегембаева. Электроника и схемотехника аналоговых устройств 1. Конспект лекции. АУЭС. Алматы, 2010.− 57 с.

 

Рассмотрены основные полупроводниковые приборы. Приведены схемы, вольтамперные характеристики и описаны принципы действия приборов.

Конспект лекции предназначены для студентов, обучающихся по специальности 5B071900 – Радиотехника, электроника и телекоммуникации

и может быть использовано студентами специальностей 5B070200 Автоматизация и управление и 5B070400 – Вычислительная техника и программное обеспечение. 

Табл. 4, Ил. 37, библ. – 15 назв.

 

РЕЦЕНЗЕНТ: канд. техн. наук, доцент Табултаев С.С. 

 

Печатается по плану издания НАО «АУЭС» на 2010 г.

  

 

© НАО «Алматинский университет энергетики и связи», 2011 г.

 

Содержание 

Лекция 1. Общие сведения об электронных приборах   4

Лекция 2. Стабилитроны. Типы полупроводниковых диодов                     8

Лекция 3. Биполярные транзисторы                                                             12

Лекция 4. Усиление с помощью транзистора                                                  16

Лекция 5. Применение транзисторов. Полевые транзисторы (ПТ)              20

Лекция 6. Фото - и оптоэлектронные приборы                                             23

Лекция 7. Фототиристоры и фототранзисторы                                            27

Лекция 8. Усилители                                                                                      31

Лекция 9. Усилители (продолжение)                                                             36

Лекция 10. Технологии интегральных микросхем                                        41

Лекция 11.  Полупроводниковые интегральные схемы памяти                    45

Лекция 12. Организация внутренней памяти ЭВМ: оперативных, сверхоперативных, постоянных, КЭШ и ФЛЭШ памяти  50

Список литературы                                                                                        56


Лекция 1. Общие сведения об электронных приборах

 

Электронным прибором (ЭП) называют устройство, в котором в результате взаимодействия свободных или связанных носителей заряда с электрическим, магнитным и переменным электромагнит­ным полем обеспечивается преобразование информационного сиг­нала или преобразование вида энергии.

Основными признаками классификации разнообразных по прин­ципу действия, назначению, технологии изготовления, свойствам и параметрам можно считать: вид преобразования сигнала; вид рабо­чей среды и тип носителей заряда; структуру (устройство) и число электродов; способ управления.

По виду преобразования сигнала все ЭП можно разбить на две группы. К первой группе относятся ЭП, в которых использу­ется преобразование одного вида энергии в другой. В эту группу вхо­дят электросветовые ЭП (преобразование типа электрический сигнал в световой), фотоэлектронные приборы (световой сигнал в электрический), электромеханические (электрический сигнал в ме­ханический), механоэлектрические ЭП (механический сигнал в элек­трический), оптопары (электрический сигнал в световой и затем сно­ва в электрический)и др.

Ко второй группе обычно относятся электропреобразователь­ные приборы, в которых изменяются параметры электрического сиг­нала (например, амплитуда, фаза, частота и др.).

По виду рабочей среды и типу носителей заряда различают сле­дующие классы электронных приборов: электровакуумные, газоразрядные (разреженный газ, электроны и ионы), полупроводниковые (полупроводник, электроны и дырки), хемотронные (жидкость, ионы и электроны).

Электроды электронного прибора — это элементы его конструк­ции, которые служат для формирования рабочего пространства при­бора и связи его с внешними цепями. Число электродов и их потенциалы определяют физические процессы в приборе.

Совокупность условий, определяющих состояние или работу электронного прибора, принято называть режимом электронного прибора, а любую величину, характеризующую этот режим (к приме­ру, ток или напряжение), — параметрами режима. Говорят об усилительных, импульсных, частотных, шумо­вых, температурных и механических свойствах, о надежности и т.п. Количественные сведения об этих свойствах называют параметра­ми прибора. К ним, например, относят коэффициенты передачи токов, характеристические частоты, коэффициент шума, интенсивность отказов, ударную стойкость и др.

Остановимся на понятиях статического и динамическо­го режимов приборов. Статическим называют режим, когда прибор работает при постоянных («статических») напряжениях на электро­дах. В этом режиме токи в цепях электродов не изменяются во вре­мени и распределения зарядов и токов в приборе также постоянны во времени. Однако, если хотя бы один из параметров режима, например, напряжение на каком-то электроде, изменяется во времени, режим называется динамическим. В динамическом режиме поведение при­бора существенно зависит от скорости или частоты изменения воз­действия (например, напряжения).

У большинства приборов эта зависимость объясняется инерци­онностью физических процессов в приборе, например, конечным временем пролета носителей заряда через рабочее пространство или конечным временем жизни носителей. Следователь­но, связь мгновенных значений тока и напряжения в динамическом режиме должна отличаться от связи постоянных значений тока и напряжения в статическом режиме. Однако, если время пролета значительно меньше периода изменения переменного напряже­ния, то это отличие во взаимосвязи будет несущественным, т.е. связь мгновенных значений будет практически такой же, как посто­янных величин в статическом режиме. Указанная разновидность динамического режима называется квазистатическим режимом («квази» — означает «как бы» или «как будто»).

Обычно динамический режим получается в результате внешнего воздействия, например, входного сигнала. Входной сигнал может быть синусоидальным или импульсным. Малым называют такой сигнал, при котором наблюда­ется линейная связь (прямая пропорциональность) между амплиту­дами выходного и входного сигналов.

 

Полупроводниковые приборы.

 

Полупроводниковые приборы – электронные приборы, действие которых основано на электронных процессах в полупроводниках.

Рассмотрим процессы в n-p-переходе при отсутствии внешнего источника напряжения. Так как носители заряда совершают беспорядочное тепловое движение, то происходит их диффузия из одного полупроводника в другой. Концентрация электронов в n-слое больше, чем в p-слое, и часть электронов перейдет из n-слоя в p-слой. Одновременно наблюдается диффузионный переход дырок из p-слоя в n-слой. В результате в n-слое остается нескомпенсированный объемный заряд положительных ионов (в основном донорной примеси), а в p-слое - нескомпенсированный объемный заряд отрицательных ионов акцепторной примеси. Между образовавшимися объемными зарядами возникает контактная разность потенциалов Uк=jn-jp и электрическое поле напряженностью Ек. На потенциальной диаграмме n-p-перехода за нулевой потенциал принят потенциал граничного слоя. В n-p-переходе возникает потенциальный барьер, препятствующий диффузионному перемещению носителей заряда. Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. На рисунке 1б изображен барьер для электронов, стремящихся за счет диффузии перемещаться из области n в область p.

Таким образом, в n-p-переходе вследствие ухода электронов и дырок вглубь p- и n-областей образуется обедненный зарядами слой, называемый запирающим и обладающий большим сопротивлением в сравнении с сопротивлением остальных объемов n- и p-областей.

Если источник внешнего напряжения положительным полюсом подключить к полупроводнику p-типа и отрицательным к n-типа (прямое включение), то электрическое поле, создаваемое в n-p-переходе прямым напряжением Uпр, действует навстречу контактной разности потенциалов Uк. Потенциальный барьер понижается до величины Uк-Uпр, уменьшаются толщина запирающего слоя и его сопротивление Rпр.

Если полярность внешнего источника изменить на обратную, то потенциальный барьер возрастает до величины Uк+Uобр. В этом случае через переход могут пройти только неосновные носители: электроны из p-области в n-область и дырки во встречном направлении. Так как концентрация основных носителей заряда на насколько порядков выше концентрации неосновных, то прямые токи на несколько порядков больше обратных. Электронно-дырочный переход обладает выпрямляющими свойствами, которые используются для создания диодов.

 

Контакты металл-полупроводник

 

Они используются в полупроводниковой электронике либо в ка­честве омических (невыпрямляющих) контактов с областями полупроводниковых приборов, либо в качестве выпрямляющих контак­тов. Структура и свойства таких контактов зависят от взаимного расположения уровня Ферми в металле и полупроводнике.

Рисунок 2

Потенциальный барьер в приконтактном слое, равный разности работ выхода металла и полупроводника (jк = jМjn на рисунке 2), называют барьером Шотки, а диоды, использующие эти барьеры, – диодами Шотки или диодами с барьером Шотки (ДБШ).

Важной особенностью барьеров Шотки по сравнению с р-n-переходом является отсутствие инжекции неосновных носителей. Эти переходы «работают» на основных носителях, поэтому у них отсут­ствует диффузионная емкость, связанная с накоплением и рассасы­ванием неосновных носителей, и выше быстродействие.

Особенностью переходов с барьером Шотки является то, что их ВАХ ближе всего к экспоненциальной ВАХ идеализированного р-n-перехода, а прямое напряжение значительно меньше (примерно на 0,2 В), чем в р-n-переходах.

 

Полупроводниковые диоды.

 

Полупроводниковый диод – двухэлектродный электронный прибор, разновидность полупроводникового прибора.

Классификация полупроводниковых диодов производится по следующим признакам:

-       методу изготовления перехода: сплавные, диффузионные, планарные, точечные, диоды Шотки и др.;

-       материалу: германиевые, кремниевые, арсенидо-галлиевые и др.;

-       физическим процессам, на использовании которых основана работа диода: туннельные, лавинно-пролетные, фотодиоды, светодиоды, диоды Ганна и др.;

-       назначению: выпрямительные, универсальные, импульс­ные, стабилитроны, детекторные, параметрические, смеситель­ные, СВЧ-диоды и др.

По назначению диоды делят на выпрямительные, высокочастотные, импульсные, стабилитроны и т.д. Их изготавливают на основе германия или кремния. Выпрямительные диоды предназначены для преобразования переменного тока низкой частоты в постоянный ток. Вольтамперная характеристика (ВАХ) выпрямительного диода, его условное графическое изображение и буквенное обозначение даны на рисунке 3.

Рисунок 3

 

 

Лекция 2. Стабилитроны. Типы полупроводниковых диодов

Стабилитроном (от лат. stabilis – устойчивый, постоянный) называется двухэлектродный электронный прибор, падение напряжения на котором остается практически постоянным при изменении в определенных пределах протекающего через него тока. В полупроводниковых стабилитронах этот рабочий участок вольтамперной характеристики находится в узкой области обратных напряжений электронно-дырочного перехода, соответствующих электрическому пробою: туннельному или лавинному.

Стабилитрон представляет собой кремниевый полупроводниковый диод, который нормально работает при электрическом пробое n-p-перехода. При этом напряжение на диоде незначительно зависит от протекающего тока. Электрический пробой не вызывает разрушения перехода, если ограничить ток до допустимой величины. Стабилитроны применяют для стабилизации постоянного напряжения. ВАХ стабилитрона и его условное графическое обозначение приведены на рисунке 4.

Рисунок 4

Основные параметры стабилитрона: напряжение стабилизации Uст.ном, минимальный Icт.min и максимальный Iст.max токи стабилизации, максимальная мощность Pст.max.

Выпрямительными обычно называют диоды, предназначенные для преобразования переменного напряжения промышленной час­тоты (50 или 400 Гц) в постоянное. Основой выпрямительного полупроводникового диода является обыч­ный р-n-переход. В практических случаях р-n-переход диода имеет достаточную площадь для того, чтобы обеспечить большой прямой ток. Для получения больших обратных (пробивных) напряжений ди­од обычно выполняется из высокоомного материала.

Основными параметрами, характеризующими выпрямительные диоды, являются:

-          максимальный прямой ток ;

-          обратный ток при заданном обратном напряжении  (значе­ние обратного тока германиевых диодов на два – три порядка боль­ше, чем у кремниевых);

-          падение напряжения на диоде при заданном значении прямого тока Inp(Unp0,3...0,7 В для германиевых диодов и Unp0,8…1,2 В – для кремниевых);

-          максимально допустимое постоянное обратное напряже­ние диода (для германиевых диодов до 400 В, кремние­вых до 1000 В);

-          барьерная емкость диода при подаче на него обратного напря­жения некоторой величины;

-          диапазон частот, в котором возможна работа диода без суще­ственного снижения выпрямленного тока;

-          рабочий диапазон температур (германиевые диоды работают в диапазоне –60...+70°С, кремниевые – в диапазоне –60...+150°С, что объясняется малыми обратными токами кремниевых диодов).

Выпрямительные диоды обычно подразделяются на диоды ма­лой, средней и большой мощности, рассчитанные на выпрямленный ток до 0,3, от 0,3 до 10 и свыше 10 А соответственно.

Для работы на высоких напряжениях (до 1500 В) предназначе­ны выпрямительные столбы, представляющие собой последова­тельно соединенные р-n-переходы, конструктивно объединенные в одном корпусе. Выпускаются также выпрямительные матрицы и блоки, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие  до 1 А и  до 600В.

Универсальные (высокочастотные) диоды применяются для преобразования высокочастотных сигналов. Импульсные полупроводниковые диоды предназначены преимущественно для работы в и им­пульсных режимах (преобразования импульсных сигналов). Эти диоды характеризуются мини­мальными значениями реактивных параметров, что достигается благо­даря специальным конструктивно-технологическим мерам.

Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью. Для уменьшения времени жизни  используется легирование материала (например, золотом), что создает много ловушечных уровней в за­прещенной зоне, увеличивающих скорость рекомбинации.

Разновидностью универсальных диодов является диод с корот­кой базой. В таком диоде протяженность базы меньше диффузион­ной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носи­телей в базе, а фактическим меньшим временем нахождения (вре­менем пролета). Однако осуществить уменьшение толщины базы при большой площади р-n-перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площа­ди являются маломощными.

В настоящее время широко применяются диоды с p-i-n-структурой, в которой две сильнолегированные области р- и n-типа разде­лены достаточно широкой областью с проводимостью, близкой к собственной (i-область).

Особенность работы р-i-n-диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое со­противление резко падает. При обратном напряжении происходит экстракция носителей из i-области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротив­ления i-области по сравнению с равновесным состоянием. Поэтому для p-i-n-диода характерно очень большое отношение прямого и об­ратного сопротивлений, что важно при использовании их в переклю­чательных режимах.

В качестве высокочастотных универсальных диодов использу­ются структуры с барьерами Шотки и Мотта. В этих приборах про­цессы прямой проводимости определяются только основными носи­телями заряда. Таким образом, у рассматриваемых диодов отсутст­вует диффузионная емкость, связанная с накоплением и рассасы­ванием носителей заряда в базе, что и определяет их хорошие вы­сокочастотные свойства.

Отличие барьера Мотта от барьера Шотки состоит в том, что тон­кий i-слой создан между металлом М и сильно легированным полу­проводником , так что получается структура M-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщи­на обедненного слоя в -области очень мала и не зависит от напря­жения. И поэтому барьерная емкость практически не зависит от на­пряжения и сопротивления базы.

Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шотки, которые, в отличие от р-n-перехода, почти не накаплива­ют неосновных носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления  (около 100  пс).

 

Рисунок 5

Разновидностью импульсных диодов являются диоды с накоп­лением заряда (ДНЗ) или диоды с резким восстановлением обрат­ного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (см. рисунок 5). При этом значение  может быть значительным, но  должно быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных устройствах.

Варикапом называется полупроводниковый диод, используе­мый в качестве электрически управляемой емкости с достаточно высокой добротностью в диапазоне рабочих частот. В нем исполь­зуется свойство р-n-перехода изменять барьерную емкость под действием внешнего напряжения.

Туннельными являются полупроводниковые диоды, в которых используется тун­нельный эффект, приводящий к появлению на прямой ветви ВАХ участка с отрица­тельным дифференциальным сопротивлением.

Среди выпрямительных диодов следует выделить особо диод с барьером Шотки. Этот диод характеризуется высоким быстродейст­вием и малым падением напряжения (<0,6 В). К недостаткам ди­ода следует отнести малое пробивное напряжение и большие об­ратные токи.

Наиболее перспективными источниками излучения для оптоэлектроники являются светодиоды. Такими их делают малые габариты и масса (излучающие площади 0,2...0,1 мм 52 0 и менее), большой срок службы, измеряемый годами и даже десятками лет (10 54 0...10 55 0 ч), высокое быстродействие, не уступающее интегральным схемам (10 5-9 0...10 5-5 0 с), низкие рабочие напряжения (1,6...2,5 В), малая потребляемая мощность (20...600 мВт), возможность получения излучения заданного спектрального состава (от синего до красного в видимой части спектра и ближнего инфракрасного излучения). Они используются в качестве источника излучения для управления фотоприёмниками в оптронах, для представления цифро-буквенной информации в калькуляторах и дисплеях, для ввода информации в компьютерах и пр.
Светодиод представляет собой гомо- или гетеро-pn-переход, прохождение тока через который в прямом направлении сопровождается генерацией в полупроводнике излучения. Излучение является следствием инжекционной люминесценции – рекомбинации
, инжектированных через p-n-переход эмиттером неосновных носителей тока (электронов) с основными носителями тока в базе (дырками). Светодиоды для видимого и ближнего инфракрасного излучения изготавливаются главным образом из монокристаллов материалов типа A 5III 0B 5V 0: фосфида галия, арсенида галия и более сложных соединений: GaAs 41-x 0P 4x 0 , Ga 41-x 0Al 4x 0As , где x - доля содержания того или другого элемента в соединении.
Для получения требуемого цвета свечения материалы сильно легируются соответствующими примесями или их состав сильно варьируется. Так, для получения красного излучения фосфид галия легируется цинком и кислородом, для получения зелёного - азотом.
Если в GaAs 41-x 0P 4x 0 x=0,39 , то светодиод излучает красный свет с  7l 0=660 нм, если x=0,5...0,75, то янтарный с 7 l 0=610 нм.
Из простого соотношения, связывающего длину волны излучения с шириной запрещённой зоны полупроводника, 7 l 0[нм] = 1234/ 7e 0 [эВ]
, следует, что видимое излучение с 7 l, 0720 нм можно получить лишь от широкозонных полупроводников с шириной запрещённой зоны 7 e. 01,72 эВ. У арсенида галия при комнатной температуре 7 e 0=1,38 эВ, поэтому светодиоды из арсенида галия излучают невидимое, инфракрасное излучение с  7l 0=900 нм.
Светодиоды могут изготавливаться и бескорпусными. Тогда их размеры определяются размерами кристалла (0,4 7& 00,4 мм 52 0).

Лекция 3. Биполярные транзисторы

 

Транзи́стор (от англ. transfer — переносить и resistance — сопротивление) — электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Используется для усиления, генерирования и преобразования электрических сигналов.

В настоящее время широко используются биполярные транзисторы (БТ) и транзисторы на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ) или МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 32 нм. На одном современном чипе (обычно размером 1—2 см²) размещаются несколько (пока единицы) миллиардов МОПТ.

По основным полупроводниковым материалам различают транзисторы: германиевые, кремниевые и арсенид-галлиевые. Другие материалы транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок.

Устройство плоскостного биполярного транзистора показано схематически на рисунок 6

 

Рисунок 6 Устройство плоскостного биполярного транзистора

 

Транзистор представляет собой пластину германия или кремния, или другого полупроводника, в которой созданы три области с различной электропроводностью. Для примера взят транзистор типа n–p–n, имеющий среднюю область с дырочной, а две крайние области – с электронной электропроводностью. Широко применяются также транзисторы типа p–n–p, в которых дырочной электропроводностью обладают две крайние области, а средняя имеет электронную электропроводность.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом, в транзисторе имеются два n–p–перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Расстояние между ними должно быть очень малым, не более единиц микрометров, т.е. область базы должна быть очень тонкой. Это является условием хорошей работы транзистора. Кроме того, концентрация примесей в базе всегда значительно меньше, чем в коллекторе и эмиттере. Для величин, относящихся к базе, эмиттеру и коллектору, применяют в качестве индексов буквы «б», «э» и «к». Токи в проводах базы, эмиттера и коллектора обозначают соответственно iб, iэ, iк. Напряжения между электродами обозначают двойными индексами, например, напряжение между базой и эмиттером Uб-э, между коллектором и базой Uк-б.

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах.

Активный режим – напряжение на эмиттерном переходе прямое, а на коллекторном – обратное.

Режим отсечки (запирания) – обратное напряжение подано на оба перехода.

Режим насыщения – на обоих переходах прямое напряжение.

Основным является активный режим. Он используется в большинстве усилителей и генераторов. Режимы отсечки и насыщения характерны для импульсной работы транзистора.

В схемах с транзисторами обычно образуются две цепи: входная (управляющая) – в нее включают источник усиливаемых сигналов и выходная (управляемая) – в нее включается нагрузка.

Принцип работы транзисторов обоих типов одинаков, различие заключается лишь в том, что в транзисторе n-p-n в образовании коллекторного тока принимают участие электроны, инжектированные эмиттером, а в транзисторе p-n-p типа – дырки.

Принцип действия биполярного транзистора основан на использовании трёх явлений:

-       инжекции носителей из эмиттера в базу;

-       переноса инжектированных в базу носителей к коллекторному переходу;

-       экстракции инжектированных в базу и дошедших до коллекторного перехода неосновных носителей из базы в коллектор.

На рисунке 7, а показана структура транзистора n-p-n типа. С помощью внешних источников напряжения эмиттерный переход смещается в прямом направлении, а коллекторный – в обратном. Таким образом, транзистор функционирует в активном режиме, когда проявляются его усилительные свойства.

Рассмотрим эти явления подробнее. При подключении к эмиттерному переходу прямого напряжения противоположно направленное внешнее поле компенсирует внутреннее поле перехода и уменьшает контактную разность потенциалов на величину электродвижущей Еэ (см. рисунок 7, б). Это приводит к возникновению инжекции электронов из эмиттера в базу и дырок из базы в эмиттер, во входной управляемой части транзистора. Таким образом, в цепи эмиттер протекает эмиттерный ток Iэ, который представляет собой диффузионный ток основных носителей и содержит две составляющих – дырочную и электронную.

                                                 1)

 

φкэ

 

 

б)

 

φкк

 
 

х

 

φ

 

Рисунок 7 – Токи в транзисторе n-p-n типа (а), распределение потенциала в областях транзистора (б)

 

Поскольку дырочная составляющая эмиттерного тока замыкается исключительно в цепи эмиттер – база, она не участвует в образовании коллекторного тока, а значит, является бесполезной, и её следует уменьшать. Поэтому при создании транзисторов область базы всегда легируют намного слабее, чем эмиттерную область(nэ>>pб). При этом из эмиттера в базу инжектируется гораздо большая часть носителей, чем из базы в эмиттер.

Количественно процесс инжекции характеризуется величиной коэффициента инжекции, которая показывает, какую часть от полного тока эмиттера составляет её полезная часть Iэn.

   2)

Поскольку абсолютно исключить поток дырок из базы в эмиттер невозможно, то следует полагать, что g<1 всегда и в лучшем случае g»0.9995.

В результате инжекции электронов в базу у эмиттерного перехода их становится больше. Коллекторный же переход включён в обратном направлении и работает в режиме экстракции. Он втягивает все электроны, подошедшие к нему, и перебрасывает их в коллектор. Таким образом, концентрация электронов в базе у коллекторного перехода значительно меньше, чем у эмиттерного. В базе возникает градиент концентрации, под действием которого электроны диффундируют к коллекторному переходу (см. рисунок 7, б). Распределение концентрации электронов в базе показано на рисунок 8.  Поскольку толщина базового слоя мала (Wб<<Ln), то закон распределения близок к линейному. Градиент концентрации электронов  в базе определяет диффузионный ток электронов в направлении коллекторного перехода.

Описанный характер движения электронов в базе возможен только при условии электрической нейтральности базы, когда количество находящихся в объёме базы электронов равно количеству дырок.

Рисунок 8 – Распределение неосновных носителей в базе транзистора в активном режиме

 

В процессе диффузии через базу часть электронов рекомбинирует с дырками базы. В результате актов рекомбинации количество электронов, дошедших до коллектора, не будет равно количеству электронов, поступивших из эмиттера, следовательно, электронная составляющая тока коллектора Iкn будет меньше электронной составляющей эмиттерного тока Iэn.

Акты рекомбинации электронов с дырками создают недостаток дырок, требующихся для компенсации электронов, входящих в базу из эмиттера. Необходимые дырки поступают по цепи базы, создавая базовый ток транзистора Iбрек. Таким образом, разность между электронными составляющими эмиттерного и коллекторного токов представляет собой базовый ток рекомбинации:

                                                3)

Процесс рекомбинации дырок в базе численно определяется коэффициентом переноса носителей через базу, который показывает, какая часть носителей из эмиттерного перехода достигла коллекторного перехода.

.                           4)

Из выражения видно, что n<1 всегда. Максимальное значение n » 0,95 – 0,99. Чтобы увеличить коэффициент переноса (n приблизить к единице) и увеличить тем самым электронную составляющую коллекторного тока, необходимо уменьшить Iбрек. Для этого при изготовлении транзисторной структуры необходимо обеспечить следующие условия:

1)   базу необходимо выполнить настолько тонкой, чтобы её ширина была бы гораздо меньше диффузионной длины носителей в базе (Wб<<Ln), тогда большая часть носителей, в данном случае электронов, успеет дойти до коллекторного перехода, не успев рекомбинировать с дырками базы;

2)     базу следует легировать слабо, чтобы опять же уменьшить число актов рекомбинации электронов с дырками базы;

Лекция 4. Усиление с помощью транзистора

 

Рассмотрим схему усилительного каскада с транзистором n–p–n типа (см. рисунок 9). Приведенная схема называется схемой с общим эмиттером (ОЭ), т.к. эмиттер является общей точкой для входа и выхода схемы.

Рисунок 9 – Схема включения транзистора с ОЭ

 

Входное напряжение, которое необходимо усилить, подается от источника колебаний ИК на участок база – эмиттер. На базу подано также положительное смещение от источника E1, которое является прямым напряжением для эмиттерного перехода. Цепь коллектора (выходная цепь) питается от источника E2. Для получения усиленного выходного напряжения в эту цепь включена нагрузка Rн.

C1 – конденсатор большой емкости необходим для того, чтобы не происходила потеря части входного переменного напряжения на внутреннем сопротивлении источника E1. C2 необходим для того, чтобы не было потери части выходного усиленного напряжения на внутреннем сопротивлении источника E2.

Работа усилительного каскада с транзистором происходит следующим образом. Напряжение источника E2 делится между сопротивлением нагрузки и внутренним сопротивлением транзистора r0, которое он оказывает постоянному току коллектора. Это сопротивление приближенно равно сопротивлению коллекторного перехода rк0 для постоянного тока. В действительности к сопротивлению rк0 еще добавляются небольшие сопротивления эмиттерного перехода, а также n– и p–областей, но эти сопротивления можно не принимать во внимание.

Если во входную цепь включается источник колебаний, то при изменении его напряжения изменяется ток эмиттера, а следовательно, сопротивление коллекторного перехода rк0. Тогда напряжение источника E2 будет перераспределяться между Rн и rк0. При этом переменное напряжение на peзиcтopе нагрузки Rн может быть получено в десятки раз большим, чем входное переменное напряжение. Изменения тока коллектора почти равны изменениям тока эмиттера и во много раз больше изменений тока базы. Поэтому в данной схеме получается значительное усиление тока и очень большое усиление мощности.

Для большей наглядности рассмотрим работу усилительного каскада с транзистором на числовом примере. Пусть питающие напряжения E1 = 0,2 В и E2 = 12 В, сопротивление резистора нагрузки Rн = 4 кОм и сопротивление транзистора r0 при отсутствии колебаний на входе также равно 4 кОм, т.е. полное сопротивление коллекторной цепи равно 8 кОм. Тогда ток коллектора, который можно приближенно считать равным току эмиттера, составляет

                  5)

Напряжение E2 разделится пополам, напряжение на Rн и на r0 будет по 6 В.

Пусть oт источника колебаний на вход поступает переменное напряжение с амплитудой 0,1 В. Максимальное напряжение на участке база – эмиттер при положительной полуволне становится равным 0,3 В. Предположим, что под влиянием этого напряжения ток эмиттера возрастает до 2,5 мА. Таким же практически станет и ток коллектора. Он создаст на резисторе нагрузки падение напряжения 2,5·4=10 В, а падение напряжения на сопротивлении r0 транзистора уменьшится до 12–10 = 2 В. Следовательно, это сопротивление уменьшится до 2:2,5 = 0,8 кОм.

Через полпериода, когда источник колебаний даст напряжение, равное – –0,1 В, произойдем обратное явление. Минимальное напряжение база – эмиттер станет 0,2–0,1=0,1 В. Токи эмиттера и коллектора уменьшатся до 0,5 мА. На резисторе Rн падение напряжения уменьшится до 0,5·4=2 В, а на сопротивлении r0 оно возрастет до 10 В. Следовательно, это сопротивление увеличится до 10:0,5=20 кОм.

Таким образом, подача на вход транзистора переменного напряжения с амплитудой 0,1 В вызывает изменение сопротивления от 0,8 до 20 кОм. При этом напряжения на резисторе нагрузки и на транзисторе изменяются на 4 В в ту и другую сторону (от 10 до 2 В). Следовательно, выходное напряжение имеет амплитуду колебаний 4 В, т. е. оно в 40 раз больше входного напряжения. Этот числовой пример является приближенным, так как на самом деле зависимость между током коллектора и входным напряжением нелинейна.

 

Схемы включения транзисторов (ОБ, ОК, ОЭ)

 

Применяют три основные схемы включения транзисторов в усилительные или иные каскады. В этих схемах один из электродов транзистора является общей точкой входа и выхода каскада. Во избежание ошибок при этом надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Не следует рассматривать вход и выход по постоянному напряжению.

Основные схемы включения транзисторов называются соответственно схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК). Принцип усиления колебаний во всех этих каскадах одинаков, но свойства схем различны.

Схема с общим эмиттером (ОЭ). Эта схема изображена на рисунок 9 и является наиболее распространенной, т.к. она дает наибольшее усиление по мощности.

Коэффициент усиления по току ki – это отношение амплитуд (или действующих значений) выходного и входного переменного тока, т. е. переменных составляющих токов коллектора и базы:

.                       5)

Усилительные свойства транзистора при включении его по схеме ОЭ характеризует один из главных его параметров – статический коэффициент усиления по току (или коэффициент передачи тока) для схемы ОЭ, обозначаемый b. Поскольку он должен характеризовать только сам транзистор, то его определяют в режиме без нагрузки (Rн=0), т. е. при постоянном напряжении участка коллектор-эмиттер:

,                                             6)

при uк-э=const.

Коэффициент усиления каскада по напряжению равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является переменное напряжение база - эмиттер Uб-э, а выходным - переменное напряжение на резисторе нагрузки UR, что соответствует напряжению между коллектором и эмиттером Uк-э:

     7)

Коэффициент усиления каскада по мощности kp представляет собой отношение выходной мощности к входной. Каждая из этих мощностей определяется половиной произведения амплитуд соответствующих токов и напряжений:

поэтому

        8)

Важной величиной для транзистора является его входное сопротивление, которое определяется по закону Ома. Для схемы ОЭ

                         9)

Каскад по схеме ОЭ при усилении переворачивает фазу напряжения,   т. е. между выходным и входным напряжением имеется фазовый сдвиг 180°.

Достоинство схемы ОЭ – удобство питания ее от одного источника, поскольку на коллектор и базу подаются питающие напряжения одного знака.

Недостатки данной схемы – худшие по сравнению со схемой ОБ частотные и температурные свойства. С повышением частоты усиление в схеме ОЭ снижается в значительно большей степени, нежели в схеме ОБ. Режим работы схемы ОЭ сильно зависит от температуры.

 

Схема с общей базой (ОБ).

Схема с ОБ - эта схема дает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление, чем схема ОЭ, все же ее иногда применяют, так как по своим частотным и температурным свойствам она значительно лучше схемы ОЭ.

Коэффициент усиления по току каскада ОБ всегда несколько меньше единицы:

                                    10)

 т.к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент усиления по току (коэффициент передачи тока), для схемы ОБ обозначается a. Он определяется для режима без нагрузки (Rн=0), т. е. при постоянном напряжении коллектор-база:

, при uк-б=const.

Чем ближе a к 1, тем лучше транзистор. Коэффициент усиления по току ki, для каскада ОБ всегда немного меньше а, т.к. при включении Rн ток коллектора уменьшается.

Коэффициент усиления по напряжению определяется формулой:

Коэффициент усиления по мощности

kp=ki · ku.                                                    (11)

Поскольку ,  то .

Входное сопротивление для схемы ОБ:

                                            (12)

 

Входное сопротивление получается в десятки раз меньшим, чем в схеме ОЭ, поскольку напряжение Umб-э равно напряжению Umэ-б, а ток I в десятки раз больше тока I.

Для схемы ОБ фазовый сдвиг между выходным и входным напряжением отсутствует, т. е. фаза напряжения при усилении не переворачивается.

Достоинство данной схемы включения в том, что каскад по схеме ОБ вносит при усилении меньшие искажения, чем каскад по схеме ОЭ.

 

Схема с общим коллектором (ОК).

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Входное напряжение равно сумме переменного напряжения база-эмиттер uб-э и выходного напряжения:

Коэффициент усиления по току каскада ОК определяется по формуле:

 и имеет почти такое значение, как и в схеме ОЭ.

Отношение – есть коэффициент усиления по току для схемы ОЭ.

Коэффициент усиления по напряжению близок к единице, причем всегда меньше ее:

Коэффициент усиления по мощности .

Фазового сдвига между uвых и uв нет, поскольку выходное напряжение совпадает по фазе с входным и почти равно ему. Данная схема включения транзистора называется эмиттерным повторителем. Эмиттерным потому, что резистор нагрузки включен в провод эмиттера и выходное напряжение снимается с эмиттера (относительно корпуса).

Входное сопротивление каскада по схеме ОК определяется по формуле

             (13)

 

Важным достоинством данной схемы включения является высокое входное сопротивление.

 

Лекция 5. Применение транзисторов. Полевые транзисторы (ПТ)

 

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах.
Биполярные транзисторы управляются током и потребляют заметную мощность от входной цепи. Указанного недостатка лишены  полевые транзисторы (ПТ) - это полупроводниковые приборы с каналом, ток в котором управляется электрическим полем. Принцип действия их основан на использовании носителей заряда только одного знака (электронов или дырок), поэтому их иначе называют  униполярными.

Главным достоинством ПТ является высокое входное сопротивление, т.е. они практически не потребляют ток из входной цепи. Кроме того, они более технологичны и дешевле, чем биполярные, обладают хорошей воспроизводимостью требуемых параметров.

По способу создания канала различают ПТ с управляющим n-p-переходом, со встроенным каналом и с индуцированным каналом. Последние два типа относятся к разновидностям МДП-транзисторов с изолированным затвором.

УПТ с управляющим n-p-переходом (см. рисунок10,а) канал - это слой полупроводника n-типа (может быть p-типа), заключенный между двумя n-p-переходами. Канал имеет два вывода во внешнюю цепь: исток (И), из которого заряды выходят в канал, сток (С), в который заряды входят из канала. Слои p-типа соединены между собой и имеют вывод во внешнюю цепь, называемый затвором (З).

 

Риснок 10

 

Затвор служит для регулирования поперечного сечения канала. Особенность ПТ в том, что движение основных носителей заряда только одного знака происходит по каналу от истока к стоку, а не через переход, как в биполярном транзисторе.

Управляющее напряжение между З и И является обратным для обоих n-p-переходов (Uзи<0). Оно вызывает вдоль канала равномерный слой, обедненный носителями заряда при Uси=0. Изменяя Uзи, изменяют ширину n-p-переходов, тем самым регулируют сечение токопроводящего канала и его проводимость. Напряжение Uси>0 вызывает неравномерность обедненного зарядами слоя, наименьшее сечение канала вблизи стока.

Управляющее действие затвора иллюстрируют передаточной (стоко-затворной) характеристикой Iс(Uзи) при Uси=const. На практике чаще используют выходные (стоковые) характеристики Iс(Uси) при Uзи=const, по которым строят передаточные (см. рисунок11,в).

 

Рисунок 11

 

МДП-транзисторы со встроенным каналом имеют структуру металл - диэлектрик - полупроводник. У поверхности кристалла полупроводника (подложки p-типа) созданы две области n-типа и тонкая перемычка между ними - канал (см. рисунок 11,а). Области n-типа имеют выводы: И-исток и С-сток. Кристалл покрыт окисной пленкой диэлектрика SiO2, на которой расположен металлический затвор (З), электрически изолированный от цепи исток - сток. Подложка соединяется с истоком внутри прибора, либо имеет вывод во внешнюю цепь (П).

При отрицательном потенциале на затворе Uзи<0 поле затвора выталкивает электроны из канала в p-подложку, исток и сток. Канал обедняется электронами, его сопротивление увеличивается и ток стока уменьшается. Такой режим называют режимом обеднения. Характеристики Iс(Uси) располагаются ниже кривой при Uзи=0 (см. рисунок11,в). Если на затвор подано Uзи>0, то под действием поля затвора канал насыщается электронами из p-подложки, истока и стока - это режим обогащения.

Таким образом, МДП-транзистор со встроенным каналом может работать как в режиме обеднения, так и в режиме обогащения , что наглядно показывают его характеристики. Структура, условное графическое изображение, передаточная Iс (Uзи) при Uси=const и стоковые Iс (Uси) при Uзи=const характеристики ПТ со встроенным каналом даны на рисунок 11а,б,в.

МДП-транзисторы с индуцированным каналом не имеют специально созданного канала между истоком и стоком, и при Uзи=0 выходной ток Iс=0. Канал индуцируется при положительном потенциале на затворе Uзи>0 благодаря притоку электронов из p-подложки, истока и стока. Этот прибор работает только в режиме обогащения.

Основными параметрами полевых транзисторов являются крутизна S=DIс/DUзи при Uси=const и внутреннее (выходное) сопротивление Ri=DUcи/DIс при Uзи=const. Иногда пользуются третьим параметром - коэффициентом усиления m=DUси/DUзи при Iс=const; m=SRi.


Лекция 6. Фото - и оптоэлектронные приборы

 

Оптоэлектроникой называют научно-техническое направление, в котором для передачи, обработки и хранения информации используются электрические и оптические средства и методы. В оптоэлектронике световой луч выполняет те же функции управления, преобразования и связи, что и электрический сигнал в электрических цепях.

Устройства оптоэлектроники обладают некоторыми существенными преимуществами по сравнению с чисто электронными устройствами. В них обеспечивается полная гальваническая развязка между входными и выходными цепями. Отсутствует обратное влияние приемника сигнала на его источник. Облегчается согласование между собой электрических цепей с разными входными и выходными сопротивлениями. Оптоэлектронные приборы имеют широкую полосу пропускания и преобразования сигналов, высокое быстродействие и большую информационную емкость оптических каналов связи (1013 - 1015 Гц). На оптические цепи не оказывают влияние различные помехи, вызванные электрическими и магнитными полями.

К недостаткам оптоэлектронных компонентов относятся: низкая температурная и временная стабильность характеристик; сравнительно большая потребляемая мощность; сложность изготовления универсальных устройств для обработки информации; меньшие функциональные возможности по сравнению с ИМС, необходимость жестких требований к технологии изготовления.

 

Классификация оптоэлектронных приборов

 

Оптоэлектронные приборы излучают и преобразуют излучение в инфракрасной, видимой или ультрафиолетовой областях спектра. Основным компонентом оптоэлектроники является пара с фотонной связью, называемая оптроном.

Рисунок 11

Простейший оптрон можно представить четырехполюсником, состоящим из трех элементов: источник света - 1, световод - 2 и приемник света - 3 (см. рисунок 11).

Входной сигнал в виде импульса или перепада входного тока возбуждает фотоизлучатель и вызывает световое излучение. Световой сигнал по световоду попадает в фотоприемник, на выходе которого образуется электрический импульс или перепад выходного тока.

В оптронных устройствах в качестве источников света применяются обычно лампы накаливания, электролюминесцентные конденсаторы или светодиоды. В качестве приемников света используют фоторезисторы, фотодиоды, фототиристоры, фототранзисторы и различные комбинации этих приборов. Условные обозначения некоторых типов оптронов показаны на рисунке12 ( а) - диодный, б) - резисторный, в) - динисторный).

Рисунок 12

Работа фоторезисторов основана на явлении изменения сопротивления вещества под воздействием внешнего светового излучения. Конструктивно фоторезистор представляет собой пластину полупроводника, на поверхности которой нанесены электроды.

Рисунок 13

 

Структура фоторезистора и условное обозначение показаны на рисунке 13, где 1 -диэлектрическая пластина; 2 - полупроводник; 3 - контакты фоторезистора.

Основными характеристиками фоторезистора являются:

Рисунок 14

 

Вольтамперная характеристика - зависимость тока I через фоторезистор от напряжения U, приложенного к его выводам, при различных значениях светового потока Ф, либо освещенности Е (рисунок 14). Ток при Ф=0 называется темновым током Iт, при Ф>0 общим током Iобщ. Их разность равна фототоку Iф=Iобщ-Iт.

Энергетическая характеристика - это зависимость фототока от светового потока, либо освещенности при U=const. В области малых Ф она линейна, а при увеличении светового потока рост фототока замедляется из-за возрастания вероятности рекомбинации носителей заряда. Энергетическая характеристика иногда называется люксамперной, в том случае, если по оси абсцисс откладывают освещенность Е в люксах.

Чувствительность - это отношение выходной величины к входной. В зависимости от того, какой величиной характеризуется излучение, различают токовую чувствительность к потоку

                                                            (14)

и токовую чувствительность к освещенности Е

                                                    (15)

В качестве одного из основных параметров фоторезистора используют величину удельной интегральной чувствительности, которая характеризует интегральную чувствительность, когда к фоторезистору приложено напряжение 1В.

                                                            (16)

У промышленных фоторезисторов удельная интегральная чувствительность имеет пределы десятые, сотые доли  при освещенности Е=200 лк.

Важными характеристиками фоторезистора являются также: спектральная характеристика; граничная частота сигнала, модулирующая световой поток; температурный коэффициент фототока и пороговый поток.

Фотодиоды имеют структуру обычного р-n-перехода (см. рисунок 15), где а) условное обозначение фотодиода, б) структура фотодиода. Вследствие оптического возбуждения в р и n областях возникает неравновесная концентрация носителей заряда.

На границе перехода неосновные носители заряда под влиянием электрического поля перебрасываются через переход в область, где они являются основными носителями. Электрический ток, созданный ими, есть полный фототок. Если р-n-переход разомкнут, то перенос носителей заряда, генерируемых светом, приводит к накоплению отрицательного в n-области и положительного в р-области зарядов. Новое равновесное состояние соответствует меньшей высоте потенциального барьера, равной (Uк-Еф). ЭДС Еф, возникающую при этих процессах, на значение которой снижается потенциальный барьер Uк в р-n-переходе, называют фотоэлектродвижущей силой (фото-ЭДС) В данной ситуации фотодиод работает в режиме фотогенератора, преобразуя световую энергию в электрическую.

Рисунок 15

 

Фотодиод может работать совместно с внешним источником (см. рисунок 15 в). При освещении фотодиода поток неосновных носителей заряда через р-n-переход возрастает. Увеличивается ток во внешней цепи, определяемый напряжением источника и световым потоком. Значение фототока можно найти из выражения Iф=SинтФ, где Sинт - интегральная чувствительность. Вольтамперные характеристики освещенного p-n-перехода показаны на рисунок 30,б. Фототок суммируется с обратным током теплового происхождения.

К основным характеристикам фотодиода относят:

Рисунок 16

 

Энергетические характеристики, которые связывают фототок со световым потоком. Причем фотодиод может быть включен как без внешнего источника ЭДС (генераторный режим), так и с внешним источником (см. рисунок16):

а) генераторный режим;

б) при работе с внешним источником).

Абсолютные и относительные спектральные характеристики – это зависимости абсолютной либо относительной чувствительности от длины волны регистрируемого потока излучения. Они аналогичны соответствующим характеристикам фоторезистора и зависят от материала полупроводника и введенных примесей.

 

Лекция 7. Фототиристоры и фототранзисторы

 

В качестве фотоприемников в оптронных устройствах также используются фототиристоры и фототранзисторы.

У фототранзисторов интегральная чувствительность значительно выше, чем у диода, и составляет сотни миллиампер на люмен.

Биполярный фототранзистор представляет собой обычный транзистор, но в корпусе его сделано прозрачное окно, через которое световой поток воздействует на область базы, вызывая в ней генерацию носителей зарядов. Они диффундируют к коллекторному переходу, где происходит их разделение. Дырки под воздействием поля коллектора идут из базы в коллектор и увеличивают ток коллектора, а электроны, оставаясь в базе, повышают прямое напряжение эмиттерного перехода, что усиливает инжекцию дырок в этом переходе. Если базовый вывод транзистора не подключается к схеме, то такое включение называют с “плавающей” базой. В этом случае режим работы транзистора будет сильно зависеть от температуры. Вывод базы используют для задания оптимального режима работы фототранзистора, при котором достигается максимальная чувствительность к световому потоку.

Фототиристоры имеют четырехслойную структуру (рисунок 16,а) и управляются световым потоком, подобно тому, как триодные тиристоры управляются током, подаваемым в цепь управляющего электрода.

 

Рисунок 16

При действии света на область базы р1 в этой области генерируются электроны и дырки.

Электроны, попадая в область перехода П2, находящегося под обратным напряжением, уменьшают его сопротивление. В результате происходит увеличение инжекции носителей из переходов П1 и П3. Ток через структуру прибора лавинообразно нарастает, т.е. тиристор отпирается. Чем больше

световой поток, действующий на тиристор, тем при меньшем напряжении включается тиристор (см. рисунок16,б).

Фототиристоры могут успешно применяться в различных автоматических устройствах в качестве бесконтактных ключей для включения значительных напряжений и мощностей. Важные достоинства тиристоров:  малое потребление мощности во включенном состоянии, малые габариты, отсутствие искрения, малое время включения.

Светодиоды — это новые источники света, которые делаются на основе полупроводниковых структур, излучающих свет. Они уже достигли уровня натриевых, самых эффективных среди ламп накаливания, и продолжают бурно развиваться. Например, из одинаковых на вид кристалликов полупроводника можно получать любой свет: красный, синий, зеленый, т.к. цвет свечения полупроводника определяется не температурой нагрева, а шириной запрещенной зоны в полупроводнике.

Полупроводниковые лазеры с рекордной мощностью и эффективностью

Для каждого полупроводника ширина запрещенной зоны своя, поэтому можно подбирать цвет свечения по нашему желанию. Даже белый, который, как известно, является зрительным обманом. Чтобы его получить, на поверхность синего светодиода наносится желтый люминофор — вещество, которое поглощает свет одного цвета, а испускает свет другого цвета. В данном случае, как правило, используется церий — он поглощает синий свет, а испускает желтый. В зависимости от того, пожалели люминофор или щедро капнули, получается цвет теплый или холодный — желтоватый или синеватый.    Кроме того, с помощью светодиодов можно получать свет разных цветов, они очень долго светят, примерно 100 тыс. часов, то есть около 11 лет, тогда как обычные лампочки перегорают за год. Соответственно, это может быть новой концепцией освещения: например, светильник покупается с полупроводниковой лампочкой-светодиодом, и вместе с ней и выбрасывается.

Светодиоды используются уже сейчас в специальных видах подсветки, например, для налобных фонарей шахтеров. По сравнению с обычной лампочкой, светодиоду необходимо гораздо меньше напряжения, примерно 3 вольта, а значит — нет опасности возникновения искры и взрыва метана в шахте. Как известно, основная проблема шахт — это освещение. 

 Если шахтеры попадают в завал, то, как правило, выходят из него только за счет экономного использования своих фонарей, то есть зажигают их по очереди, если же все будут гореть одновременно, света хватит на 8 часов (это определяется емкостью аккумулятора). Кончился аккумулятор — скоро кончится жизнь. Если же от такого аккумулятора питать светодиод, он будет светить около 20 часов, а в экономном режиме — 2 недели. Кстати, в отличие от обычной лампочки, светодиод очень сложно механически разрушить, поэтому наши шахтеры отдают предпочтение именно таким фонарям. Кроме того, из светодиодов можно делать целые прожектора, например, для кораблей. Бывают случаи, когда во время шторма моряки выпадают за борт. Так как в воде очень холодно, человека нужно доставать быстро. Для этого необходимо какое-то устройство, которое светит в любую погоду, не подвергается атмосферным воздействиям, быстро включается и не ломается при ударе о палубу. Кроме того, у него должен быть мало расходящийся луч и сила света не меньше ста тысяч кандел, чтобы освещать поверхность моря на километр. Для сравнения — боевые прожектора, при помощи которых в блокаду сбивали самолеты, имели силу света порядка миллиона кандел. Еще одним достоинством светодиодного прожектора является то, что во время работы он остается холодным, тогда как к боевому прожектору в 1 млн. кандел подойти опасно. Он очень сильно нагревается, и его нельзя трогать руками.

Спектры излучения различных светодиодов в средней инфракрасной области спектра

Рисунок 17 - Спектры излучения различных светодиодов в средней инфракрасной области спектра

         5.3 Источники излучения

Оптоэлектроника базируется на двух основных видах излучателей: лазерах (когерентное излучение) и светоизлучающих диодах (некогерентное излучение).
          В оптоэлектронике находят применение маломощные газовые, твердотельные и полупроводниковые лазеры. Разрежённость газового наполнения в рабочем объёме обусловливает высокую степень монохроматичности, одномодовость, стабильность частоты, острую направленность и, в конечном счёте, когерентность излучения. В то же время значительные габариты, низкий к.п.д., прочие недостатки газоразрядных приборов не позволяют рассматривать этот вид ОКГ как универсальный оптоэлектронный
элемент.

Значительные мощности излучения твердотельных лазеров обуславливают перспективность применения этих генераторов в дальнодействующих волоконнооптических линиях связи.

Наибольший интерес для разнообразных оптоэлектронных применений представляют полупроводниковые лазеры благодаря высокому к.п.д., малым габаритам, высокому быстродействию, простоте управления. Особенно выделяются гетеролазеры на основе тройного полупроводникового соединения Ga Al As. В их структуре тонкий слой n-типа проводимости "зажат" между областями n- и p-типов того же материала, но с большими значениями концентраций алюминия и соответственно этому большими ширинами запрещённой зоны. В роли резонатора может также выступать поверхностная дифракционная решётка, выполняющая функцию распределённой оптической обратной связи.

Для оптоэлектроники особый интерес представляют полупроводниковые излучатели - инжекционные (светодиоды) и электролюминесцентные (электролюминофоры). В первых излучение появляется в результате рекомбинации дырок с инжектированными через pn-переход электронами. Чем больше ток через светодиод, тем ярче его высвечивание. В зависимости от материала диода и примесей в нём меняется цвет генерируемого излучения: красный, жёлтый, зелёный, синий (соединения галия с фосфором и азотом, кремния с углеродом и пр., (см. таблицу1). Светодиоды на основе соединения галия с мышьяком генерируют невидимое излучение с длиной волны 0,9...0,92 мкм. На этой длине волны кремниевые фотоприёмники имеют максимальную чувствительность. Для светодиодов характерны малые размеры (0,3 7& 00,3 мм), большие срок службы (до 100 тыс. ч.) и быстродействие (10 5-6 0...10 5-9 0 с), низкие рабочие напряжения (1,6...3,5 В) и токи (10...100 мА).

 

 Таблица 3- Основные материалы для светодиодов

 

Полупроводник

4050 710, А

Цвет

Эффективность %

Быстродействие, нс

GaAs

9500 9000

ИК

12; 50 5* 0 2

10 5-7 0...10 5-6 0 10 5-9 0...10 5-8 0

GaP

6900 5500

Красный Зелёный

7 0,7

10 5-7 0...10 5-6 0 10 5-7 0...10 5-6 0

GaN

5200 4400

Зелёный Голубой

0,01 0,005

 

GaAs 41-x 0P 4x 0

6600 6100

Красный Янтарный

0,5 0,04

3 77 010 5-8 0 3 77 010 5-8 0

Ga 41-x 0Al 4x 0As

8000 6750

ИК Красный

12 1,3

10 5-8 0 3 77 010 5-8 0

In 41-x 0Ga 4x 0P

6590 5700

Красный желто-зелен.

0,2 0,1

 

Излучатели на основе люминофоров представляют собой порошковые или тонкоплёночные конденсаторы, выполненные на стеклянной прозрачной подложке. Роль диэлектрика выполняет электролюминофор на основе соединения цинка с серой, который излучает свет под действием сильного знакопеременного электрического поля. Такие светящиеся конденсаторы могут изготовляться различных размеров (от долей сантиметра квадратного до десяти и более квадратных метров), различной конфигурации, что позволяет изготавливать из них знакобуквенные индикаторы, отображать различные схемы, карты, ситуации.

В последнее время для малогабаритных устройств индикации широко стала использоваться низковольтная катодолюминесценция - свечение люминофора под действием электронного луча. Такие источники излучения представляют собой электровакуумную лампу, анод которой покрыт люминофором, излучающим красный, жёлтый, зелёный, синий свет при попадании на него ускоренных электрическим полем электронов. Простота конструкции, низкая стоимость, большие яркости и большой срок службы сделали катодолюминесценцию удобной для различных применений в оптоэлектронике.

 

Лекция 8. Усилители

 

         Для построения стабильных усилителей нужно получить усилитель с большим коэффициентом усиления (хорошо бы около 1000000), а затем применить отрицательную обратную связь (ООС). Величина ООС задаётся пассивными элементами, например, резисторами, а они обладают хорошей стабильностью.

Давайте посмотрим, как следующую схему с общим эмиттером (ОЭ), использующую п-р-п транзистор.

Рисунок 18

 

Здесь мы не ввели никаких лишних деталей, считая, что на входе есть постоянная и переменная составляющие сигнала, и на выходе мы сумеем выделить нужные составляющие сигналов. Поэтому у нас есть только резистор R и напряжение питания Еп. Напишем выражение для Uвых:

.         (17)

         Итак, у кремниевых транзисторов приведённый ко входу температурный дрейф составляет всего 2 мВ/0К. Чтобы узнать, что будет на выходе, надо это умножить на перепад температуры и коэффициент усиления. У работающего транзистора перепад температуры вполне может быть 10 0К, а коэффициент усиления у двух- трёхкаскадного усилителя может быть 1000...100000. Получается 20...2000 В. Это очень много.

         Конечно, можно использовать полевые транзисторы, у них температурный дрейф граздо меньше. Но есть несколько способов борьбы с температурным дрейфом и в биполярных транзисторах. Например, известный способ разделения сигнала на постоянную и переменную составляющие при помощи разделительных конденсаторов. Кроме того, можно преобразовать сигнал в высокочастотный, а после усиления выпрямить (модуляция-усиление-демодуляция).

         Но наибольшее распространение получил метод дифференциального каскада. Рассмотрим его подробнее.

Рисунок 19

На рисунке 19 представлена схема, состоящая из двух по возможности одинаковых транзисторов, двух коллекторных резисторов, тоже одинаковых, и одного эмиттерного резистора, общего для двух транзисторов. Схема имеет два входа и один разностный выход. Здесь также обычно используется два источника питания.

         Обычно +/- Еп одинаковые. И если Uвх близки к нулю, то на эмиттерном сопротивлении падает большое и почти постоянное напряжение, поэтому ток, протекающий через это сопротивление, тоже почти постоянный. Это значит, что мы задали ток эмиттеров. Далее этот ток разделяется на две части, и протекает через два транзистора.

         А теперь давайте рассмотрим случай одинаковых входных напряжений – синфазный входной сигнал. Теоретически, если на входах синфазный сигнал, то ток, протекающий через транзисторы, будет одинаковый, то есть разделится пополам. Но этот ток задан резистором и почти не зависит от входного сигнала. Поэтому отклик на синфазный сигнал очень мал, а так как мы на выходе берём разностный сигнал, то он вообще близок к нулю. Это обусловлено тем, что в эмиттере напряжение будет меняться почти так же, как и в базах: разность потенциалов между базой и эмиттером меняется гораздо меньше, чем на входах.

         Дифференциальный сигнал также одинаков на обоих входах, но противоположен по фазе. Поэтому на эмиттерах напряжение почти не меняется, полный эмиттерный ток тоже, а на базах транзисторов напряжение меняется гораздо сильнее, и это приводит к тому, что токи через транзисторы меняются в разные стороны: на одном транзисторе увеличивается, а на другом – уменьшается, хотя в сумме он остался неизменным. Поэтому сигнал на выходе (на коллекторах) будет сильным, да ещё в два раза больше, так как он получается как разность между двумя коллекторами.

         Дело заключается в том, что для синфазного сигнала схема аналогична схеме с ОК: есть сильная ООС благодаря наличию эмиттерного сопротивления; а для дифференциального сигнала – аналогична схеме с ОЭ: напряжение на эмиттерах практически не меняется, поэтому можно считать, что эмиттеры как бы заземлены. Итак, дифференциальный сигнал хорошо усиливается, как в схеме с ОЭ, а синфазный сигнал сильно ослабляется, как в схеме с ОК во-первых, и за счёт вычитания коллекторных сигналов во-вторых.

         Если сигналы Uвх1 и Uвх2 произвольные, то можно вычислить синфазную и дифференциальную составляющие по формулам:

         (19)

и наоборот:

.                   (20)

                                                                        Обычно для хороших дифференциальных каскадов трудно подобрать достаточно близкие по параметрам транзисторы и даже резисторы коллекторов, поэтому на практике уже давно, ещё до возникновения микроэлектроники, стали делать спаренные транзисторы, которые находятся очень близко друг к другу, изготовлены в одном технологическом режиме и имеют почти одинаковую температуру. Такие транзисторы не надо подбирать – они созданы специально похожими, чтобы получать очень низкий коэффициент усиления синфазного сигнала Ксин. А при переходе на микроэлектронику вообще все дифференциальные каскады стали делать интегральным способом. Обычно в этом случае Кдиф = 100...400, а Ксин =0,1...1. Для оценки качества дифференциального каскада вводят коэффициент ослабления синфазного сигнала (КООС):

.                                               (21)

Это лежит в пределах 400...1000, или в децибеллах 50...60 дБ.

         Почему нам так важен синфазный сигнал? Дело в том, что различные дрейфы транзисторов: старение, тепловой дрейф и так далее – это эквивалентно подаче на входы одинаковых сигналов, то есть синфазному сигналу. Поэтому, если синфазный сигнал сильно ослаблен, то и тепловой дрейф тоже ослаблен. И мы видим, что коэффициент усиления дифференциального сигнала в 1000 раз сильнее, чем, скажем, тепловой дрейф. Но это значит, что дифференциальный каскад годится для первого каскада усилителя, который будет предназначен для усиления с большим

коэффициентом усиления, чтобы потом использовать его для усилителя с ООС. Такие усилители называются операционными (ОУ).

Рисунок 20

         Итак, почти всегда для изготовления ОУ делают первым каскадом дифференциальный. Но у разных ОУ он бывает разным. Часто вместо обычных транзисторов берут сдвоенные, (см. рисунок 20).


 

Рисунок 21

         У такого каскада коэффициент усиления сдвоенных транзисторов гораздо больше (1002=10000). Именно из-за большого коэффициента усиления они и используются.

         Но можно использовать супер-вета транзисторы – это специально изготовленные транзисторы с очень маленькой базой и большим перепадом концентраций в эмиттерной и базовой области. Коэффициент усиления у них может достигать 5000 и более. К сожалению, эти транзисторы требуют очень точной технологии, и, кроме того, они не выдерживают больших напряжений. Поэтому для защиты от пробоя к ним надо добавлять ещё по одному транзистору. Из-за большой технологической сложности супер-бета транзисторы используются редко.

         Здесь использованы два одинаковых транзистора (лучше изготовленных в одном цикле), и через правый, включённый по схеме диода (коллекторный р-п переход закорочен, и остаётся только эмиттерный р-п переход), пропускается прямой ток. Этот ток определяется формулой:

.                                             (22)

Этот ток ни от чего не зависит. Он постоянен. Но значит и напряжение в его базе и базе соседнего транзистора одинаково и таково, что обеспечивает протекание точно такого же тока и через соседний транзистор:

.

У нас получилось как бы зеркало: ток, который протекает через правый транзистор, протекает и через левый, отражается. Но этот ток не зависит от напряжения на коллекторе левого транзистора. Значит, у нас получился генератор тока. И очень хороший генератор тока, так как у него очень большое выходное сопротивление, равное дифференциальному сопротивлению коллектора, которое, как мы помним, составляет 100 кОм...10 МОм. Если использовать такой хороший генератор тока, получится увеличение КООС до 1 000 000 (120 дБ).

         В дифференциальном каскаде мы обсудили почти все проблемы. Осталось обсудить только выход. А он, как мы знаем, должен быть разностным. Это значит, что его нельзя заземлить.

         Но если сделать вычитающее устройство? Оказывается, это можно с помощью токового зеркала. Два верхних транзистора имеют тип р-п-р. Поэтому у них эмиттеры с другой стрелкой и подсоединены к положительному питанию, а коллекторы внизу и идут к минусу. Правый транзистор, как у токового зеркала, служит диодом (база-коллектор закорочены). Поэтому он точно пропускает ток, который проходит через правый транзистор дифференциального каскада. И этот же ток проходит через левый транзистор токового зеркала. Но по схеме он соединён с коллектором левого транзистора дифференциального каскада. Получается противоречие: нижний транзистор даёт ток I1, а верхний – ток I2. Это противоречие разрешается тем, что к соединению коллекторов подключён ещё один провод, и разница токов уходит по нему в следующий каскад.

         По-сути дела, мы заменили коллекторные сопротивления активной нагрузкой. Эта нагрузка имеет очень большое дифференциальное сопротивление, а значит, даёт ещё большее усиление каскада.

Рисунок 22

.

 

         Лекция 9. Усилители (продолжение)

 

         Теперь рассмотрим следующий каскад усиления.

Рисунок

 23

Здесь уже не надо бороться с температурным дрейфом, так как сигнал уже большой, и дополнительное напряжение дрефа меньше сигнала. Поэтому можно взять обычный каскад с ОЭ, но для большего коэффициента усиления выполненный на сдвоенном транзисторе. Схема следующего каскада изображена на рисунке 23.

Мы представили здесь полную схему. Основные транзисторы – это сдвоенный транзистор внизу, включённый по схеме ОЭ. На базу этого транзистора подаётся входной сигнал. В коллекторе транзистора стоит активная нагрузка – второй транзистор токового зеркала. Кроме того, здесь изображён конденсатор С, который выполняет коррекцию частотной характеристики; она необходима для предотвращения нестабильности ОУ. Следует отметить, что он не всегда включается в схему, есть ОУ без коррекции. Тогда, в случае возникновения нестабильности, надо ставить конденсатор в обратную связь всего ОУ.

         Дальнейшее усиление в ОУ невозможно, так как ОУ  с тремя каскадами усиления становится слишком неустойчивым. Однако можно сделать усиление мощности за счёт каскада с ОК. Обычно частотная характеристика таких каскадов очень хорошая, поэтому для ОУ она не вносит ничего отрицательного. Схема этого каскада изображена на рисунке 24.

Рисунок 24

Пунктирная линия отделяет левую часть – детали второго каскада – от правой части – деталей третьего каскада. Как мы видим, третий каскад очень простой: в нём всего два транзистора, включённых по схеме ОК, но двухтактной. Когда напряжение положительное, открыт верхний транзистор, а нижний выполняет роль очень большого сопротивления, так как он закрыт. И наоборот, при отрицательном напряжении работает (открыт) нижний транзистор, а верхний – закрыт и выполняет роль большого сопротивления. Это двухтактный эмиттерный повторитель.

         Сложность возникает, когда напряжение мало отличается от нуля (меньше, чем на контактную разность потенциалов), так как в этом случае оба транзистора практически закрыты. Решением этой проблемы является включение в выходную цепь двух диодов, как указано на рисунке справа. Эти диоды включены так, что они всегда открыты, то есть на прохождение тока в выходной цепи второго каскада они не влияют, но на диодах падает примерно две контактных разности потенциалов, поэтому один выходной сигнал левой схемы разделяется на два для правой схемы, которые отличаются примерно на 2 контактный разности потенциалов, и транзисторы третьего каскада не могут быть одновременно закрыты. Ситуация иллюстрируется на рисунке 25 (к схеме 24 а)):

 

 

Рисунок 25

Выходной сигнал на контактную разность потенциалов меньше входного (больше входного для отрицательных величин). Для правого рисунка выходной сигал точно совпадёт со средней величиной от двух входных сигналов.

Итак, мы рассмотрели по отдельности работу всех трёх каскадов ОУ. Давайте посмотрим, как выглядит схема всего ОУ. На нижнем рисунке представлена полная схема ОУ, мы её обсуждали выше. Здесь 12 транзисторов и 2 диода. Но каскадов всего 3, да и то третий не усиливает  напряжение, а усиливает только ток или мощность. По напряжению усиливают только 2 каскада. Давайте посмотрим, куда ушли 12 транзисторов.

 Рисунок 26

         Два транзистора (Т1 и Т2) ставятся параллельно, и имеется два параллельных входа, это потому, что мы должны исключить температурный дрейф, а заодно и другие дрейфы, например, связанный со старением схемы. Ещё 2 транзистора могут использоваться для увеличения коэффициента усиления, если вместо этих транзисторов поставить сдвоенные. 2 транзистора используются как вспомогательные для генератора тока (токовое зеркало, Т3, Т4). Два транзистора используются в качестве активной нагрузки (Т5,Т6). А на самом деле в первом каскаде может использоваться ещё больше транзисторов, например, для защиты от перегрузки.

         Во втором каскаде у нас 4 транзистора: один сдвоенный транзистор (Т7,Т8) и 2 в качестве активной нагрузки (токовое зеркало, Т9,Т10). Кроме того, здесь используются два диода, а в микроэлектронике вместо диодов, как правило,  используются транзисторы. Всего получается 6.

Самый простой последний каскад: в нём всего два транзистора Т11 и Т12.

         Мы уже говорили, что современные ОУ делаются только по технологии микросхемотехники. А в микросхемотехнике очень просто делать транзисторы, несколько сложнее делать диоды и резисторы, ещё более сложно делать конденсаторы и совсем сложно делать индуктивности. Поэтому число транзисторов совершенно несущественно (правда, несколько сложнее делать комплементарные транзисторы). В современных ОУ число транзисторов достигает 50 шт и более. Но при современных возможностях изготавливать микросхемы со степенью интеграции в 106 - это не проблема.

         Теперь давайте рассмотрим основные характеристики ОУ (см. таблицу 4 ).

Таблица 4

Характеристика

Параметр

1

Большой коэффициент усиления

1000...1000000 и более

2

Дифференциальный вход

1 вход неинвертирующий

2 вход инвертирующий

3

Большие входные сопротивления

1 кОм...1 МОм

4

Малое выходное сопротивление

Меньше 100 Ом

                                                                       

Большой коэффициент усиления нужен для применения ООС. Благодаря дифференциальному каскаду, состоящему из 6...10 транзисторов, удаётся устранить температурный и другие типы дрейфов. Коэффициент усиления первого каскада удаётся повысить до 1000 и более.

         Дифференциальный вход получился случайно, но он очень удобен для осуществления ООС: можно основной сигнал подавать на неинвертирующий вход, а ООС – на инвертирующий.

         Входные сопротивления получаются не очень большими, но они разные для синфазного (большие) и дифференциального (поменьше) сигналов. Очень большие входные сопротивления, если хотя бы на входе стоят полевые транзисторы. Просто большие будут, если дифференциальный какскад сделан на сдвоенных или супер-бета транзисторах.

         Малое выходное сопротивление обусловлено применением каскада с ОК, который усиливает ток.

         Ещё одна важная характеристика – быстродействие. Оно определяется верхним пределом частотной характеристики, так как нижнего у ОУ нет. Типичная хорошая характеристика изображена на рисунке 27.

Рисунок

 27

 

Эта характеристика хорошая, потому что участок с наклоном в 450 доходит до единичного усиления (в логарифмическом масштабе 0), и значит, этот ОУ никогда не будет самовозбуждаться. Иногда более крутой спад начинается раньше.

         Кажется, что частотная характеристика определяется уровнем 0,7 (отмечено как fверх). Но ОУ никогда не используются без ООС. И как видно из рисунка, в этом случае быстродействие будет разным в зависимости от того, какова обратная связь.

         Поэтому более важной характеристикой является частота единичного усиления fт. Дело в том, что если мы знаем fт, то легко вычислить предельную частоту по формуле:

.

Самое время сказать несколько слов о других характеристиках ОУ, главным образом, об отрицательных. К ним относятся: напряжение смещения нуля dUсм, температурная чувтвительность напряжения смещения нуля dUсм/dT, ток смещения DIвх, средний входной ток Iвхср - и многое другое.

 
Лекция 10. Технологии интегральных микросхем

 

Разработки технологии изготовления транзисторов нашла себя в диффузионной технологии, в основе которой лежит фотолитография.

         Кратко опишем фотолитографию. Её задачей является создание на поверхности кремния (он лучше всего подходит для фотолитографии) маски для диффузии, которая потом будет производиться локально. Эта маска должна выдерживать очень высокие температуры (1200...13000С). Для этой цели годится оксид кремния, который получается очень просто путём окисления самого кремния при высоких температурах в парах воды и в кислороде. Его толщина порядки 1 мкм, но этого достаточно, чтобы не дать атомам примеси продиффундировать в полупроводник. Но в нужных местах в диоксиде кремния делают отверстия (окна), которые и будут определять, где пройдёт локальная диффузия.

         Для изготовления окон обычно используют фоторезист – это практически фотоэмульсия, которая обладает особыми свойствами:

1)     Она должна выдерживать травление плавиковой кислотой (обычная фотоэмульсия не выдерживает), что необходимо при вытравливании окон в диоксиде кремния.

2)     Она обладает высоким разрешением (более 1000 линий на мм, или менее 1 мкм).

3)     Она обладает низкой вязкостью для того, чтобы могла растечься до слоя толщиной в 1 мкм (иначе столь высокого разрешения не получить).

4)     Она чувствительна к облучению светом в ультрафиолетовой области (длина волны света составляет 0,3 мкм).

         Так много особых свойств может иметь только особое вещество. Это пластмасса, которая под действием света разрушается или, наоборот, под действием света образуется. Эти вещества это – фоторезисты.

         Итак, в процессе фотолитографии мы можем создать тонкий слой диоксида кремния (на кремнии, полупроводнике), затем нанести очень тонкий слой фоторезиста, далее через фотошаблон (особая фотопластинка, на которой есть много заранее рассчитанных и изготовленных тёмных и светлых мест) осветить её ультрафиолетовым светом, затем проявить, то-есть удалить освещённые места (или наоборот неосвещённые), далее можно удалить через окна в фоторезисте диоксид кремния (травление в плавиковой кислоте) и удалить сам фоторезист, так как его остатки могут помешать при высокотемпературном процессе диффузии.

         Теперь можно производить диффузию с одной стороны.

Рисунок 28

А значит, легче сделать точно регулируемый тонкий базовый слой: делаем диффузию на глубину примерно 5...6 мкм, затем вторую диффузию на 3..4 мкм. База будет примерно 2 мкм. Глубина диффузии и толщина базы соразмерны, значит, можно их сделать точно (а общая толщина пластины может быть любой, например, 1 мм). Пластину (как принято называть в электронике - "чип") можно разрезать на отдельные транзисторы, проверить каждый транзистор, и хорошие транзисторы можно посадить в корпус.

         Почему же только фотолитография позволила решить проблему точного задания толщины базы? Дело в том, что если толщина базы меньше 5 мкм (0,1 толщины волоса), то просто невозможно создать контакт к такой области. А в случае изготовления локальных эмиттерных областей этот контакт можно делать сверху там, где нет эмиттера – это может быть намного большая площадь.

         Поэтому развитие фотолитографии и локальной диффузии привело к всеобщему признанию диффузионной технологии изготовления транзисторов.

         В 60-70 гг. получила распространение транзисторная ЭВМ БЭСМ-6. Но она тоже работала примерно 1-2 суток и выходила из строя. Надо было 1-2 суток ремонтировать. Что же дальше? Надо повышать надёжность транзистора. И эта проблема была решена!

         У каждого транзистора три контакта, которые осуществляются припайкой золотых проволочек. 3 пайки к кристаллу, 3 пайки к ножкам корпуса, 3 пайки в схеме, где транзистор используется – всего 9. У МДП-транзисторов 4 контакта, значит, всего 12 паек.

         А что, если не разрезать пластину на отдельные транзисторы, а сразу использовать их в схеме? Идея заманчива, можно, по крайней мере, в 3 раза сократить количество контактов.

         Однако есть проблема – все транзисторы будут закорочены по коллектору и базе. Значит, их надо изолировать друг от друга. И эта проблема была решена, и не одним способом!

         Рассмотрим изоляцию р-п переходом. Сначала делают карманы: например, в р-типе создают диффузией п-области:

Рисунок 29

 

Предположим, что между карманами есть напряжение, например, такое, что правый карман имеет положительный потенциал. Тогда правый р-п переход смещён в обратном направлении, и тока нет. Пусть, наоборот, правый карман имеет отрицательный потенциал – тогда левый карман смещён в обратном направлении, и тока снова нет.

         Теперь в каждом кармане можно сделать свой транзистор, и он будет изолирован от других.

         Есть ещё одна проблема. При каждой диффузии нужно передиффундировать тот слой, который был, где концентрация носителей оказывается больше, чем в предыдущем слое. Значит, самая малая концентрация должна быть в пластине, в карманах она больше, карманы могут исполнять роль коллекторов, далее создаётся базовая область, в ней концентрация носителей ещё больше, чем в коллекторной области, потом мы делаем эмиттерную область, и в ней самая большая концентрация носителей заряда. Но это значит, что сопротивление коллекторной области самое большое, и поэтому очень велико RC – велика постоянная времени, транзисторы работают слишком медленно. Для повышения быстродействия транзисторов надо сделать на дне кармана тонкий слой с высокой концентрацией носителей заряда. Эта проблема тоже была решена с помощью эпитаксиального наращивания слоёв – наращивания слоёв с той же кристаллической ориентацией, что и у подложки. Это – эпитаксия. Можем нарастить тонкий слой монокристалла, но с другой концентрацией носителей заряда.

         Теперь полный цикл изготовления микросхемы (интегральной схемы) выглядит так, как показано на рисунке ниже.

1)        На первом этапе делают локальную диффузию доноров, причём сильную – для создания скрытого слоя.

2)        На втором этапе делают эпитаксию – наращивают эпитаксиальный слой с низкой концентрацией электронов (электронов больше, чем дырок).

3)        На третьем этапе проводят локальную диффузию акцепторов для разделения на карманы.

4)        Далее снова проводят диффузию акцепторов для создания базовых областей.

5)        Теперь надо сделать эмиттеры, значит локальная диффузия доноров. Заодно делают подготовку для хорошего контакта к коллекторной области - внутри коллектора сильно легированная область.

6)        И наконец, защищают всю поверхность кремния оксидом кремния, делают в нём окна для контактов к транзисторам, затем напыляют металл. Далее лишний металл удаляют.

Затем нужно разделить пластину на отдельные микросхемы, укрепить в корпус, припаять контакты.

Оказывается, интенсивность отказов микросхемы не определяется полупроводниковой структурой, а, в основном, зависит от числа контактов. Поэтому интенсивность отказов микросхемы тоже примерно 10-7 ч-1 . На одной микросхеме можно сделать много транзисторов. В настоящее время их количество может превышать миллион.

 

 

Рисунок 30

         В схемах обычно много других элементов. Как их сделать?

                                                                       

В качестве диода обычно используют транзистор, у которого нет эмиттерной области, или у обычного транзистора закорачивают один р-п переход.

         В качестве резистора используют базовую или коллекторную область, но её нужно сделать нужной длины и ширины, и к ней делают 2 контакта.

         В качестве конденсатора используют паразитную ёмкость р-п перехода, или делают конденсатор с диоксидом кремния в качестве диэлектрика.

         Индуктивности, как правило, в микроэлектронной технологии не делают.

         Однако есть пределы у микроэлектроники. Не очень-то удаётся увеличивать число транзисторов, так как они имеют ограничение по уменьшению размеров. Площадь кристалла тоже не удаётся увеличивать.

         В этом случае есть надежда, что перспективу даст функциональная электроника – это электроника, в которой простые функции транзистора заменяются более сложными функциями, имеющими наличие в различных кристаллах – полупроводниковых, сегнетоэлетрических, магнето-электрических и так далее.

  

Лекция 11.  Полупроводниковые интегральные схемы памяти

          Для классификации ЗУ важнейшим признаком является способ доступа к данным.

         При адресном доступе код на адресном входе указывает ячейку, с которой ведется обмен. Все ячейки адресной памяти в момент обращения равнодоступны.

         Адресные ЗУ делятся на RAM (Random Access Memory) u ROM (Read-Only Memory). Русские синонимы термина RAM: ОЗУ (оперативные ЗУ) или ЗУПВ (ЗУ с произвольной выборкой). Оперативные ЗУ хранят данные, участвующие в обмене при исполнении текущей программы, которые могут быть изменены в произвольный момент времени. Запоминающие элементы ОЗУ, как правило, не обладают энергонезависимостью.

         В ROM (русский эквивалент - ПЗУ, т. е. постоянные ЗУ) содержимое либо вообще не изменяется, либо изменяется, но редко и в специальном режиме. Для рабочего режима – это "память только для чтения".

RAM делятся на статические и динамические. В первом варианте запоминающими элементами являются триггеры, сохраняющие свое состояние, пока схема находится под питанием и нет новой записи данных. Во втором варианте данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур. Саморазряд конденсаторов ведет к разрушению данных, поэтому они должны периодически (каждые несколько мс) регенерироваться. Регенерация данных в динамических ЗУ осуществляется с помощью специальных контроллеров.

         Статические ЗУ называются SRAM (Static RAM), а динамические - DRAM (Dynamic RAM).

         Динамические ЗУ характеризуются наибольшей информационной емкостью и невысокой стоимостью, поэтому именно они используются как основная память ЭВМ.

         Память типа Flash по запоминающему элементу подобна памяти типа EEPROM (или иначе E2PROM), но имеет структурные и технологические особенности, позволяющие выделить ее в отдельный вид.

         В ЗУ с последовательным доступом записываемые данные образуют некоторую очередь. Считывание происходит из очереди слово за словом либо в порядке записи, либо в обратном порядке. Моделью такого ЗУ является последовательная цепочка запоминающих элементов, в которой данные передаются между соседними элементами.

         Прямой порядок считывания имеет место в буферах FIFO с дисциплиной "первый пришел - первый вышел" (First In - First Out), а также в файловых и циклических ЗУ.

          Разница между памятью FIFO и файловым ЗУ состоит в том, что в FIFO запись в пустой буфер сразу же становится доступной для чтения, т. е. поступает в конец цепочки (модели ЗУ). В файловых ЗУ данные поступают в начало цепочки и появляются на выходе после некоторого числа обращений, равного числу элементов в цепочке. Записываемые данные объединяют в блоки, обрамляемые специальными символами конца и начала (файлы). Прием данных из файлового ЗУ начинается после обнаружения приемником символа начала блока.

В циклических ЗУ слова доступны одно за другим с постоянным периодом, определяемым емкостью памяти. К такому типу среди полупроводниковых ЗУ относится видеопамять (VRAM).

         Считывание в обратном порядке свойственно стековым ЗУ, для которых реализуется дисциплина "последний пришел — первый вышел". Такие ЗУ называют буферами LIFO (Last InFirst Out).

         Ассоциативный доступ реализует поиск информации по некоторому признаку, а не по ее расположению в памяти (адресу или месту в очереди). В наиболее полной версии все хранимые в памяти слова одновременно проверяются на соответствие признаку, например, на совпадение определенных полей слов (тегов — от английского слова tag) с признаком, задаваемым входным словом (теговым адресом). На выход выдаются слова, удовлетворяющие признаку. Основная область применения ассоциативной памяти в современных ЭВМ -кэширование данных.

     Для статических ОЗУ и памяти типа ROM наиболее характерны структуры 2D, 3D и 2DM.

     В структуре 2D (см. рисунок 31) запоминающие элементы ЗЭ организованы в прямоугольную матрицу размерностью

М = k x m,

где М - информационная емкость памяти в битах;

k - число хранимых слов;

m - их разрядность.

 

Рисунок 31 – Структура ЗУ типа 2D

 

         ДШ адресного кода DC при наличии разрешающего сигнала CS (Chip Select - сигнала выбора микросхемы) активизирует одну из выходных линий, разрешая одновременный доступ ко всем элементам выбранной строки, хранящей слово, адрес которого соответствует номеру строки. Направление обмена определяется усилителями чтения/записи под воздействием сигнала R/W (Read - чтение, Write - запись).

         Структура типа 2D применяется лишь в ЗУ малой емкости, т. к. число выходов дешифратора равно числу хранимых слов.

         Структура 3D имеет двухкоординатную выборку запоминающих элементов (рисунок 32).

         Код адреса разрядностью n делится на две половины, каждая из которых декодируется отдельно. Выбирается запоминающий элемент, находящийся на пересечении активных линий выходов обоих дешифраторов. Таких пересечений будет как раз

.

    Суммарное число выходов обоих дешифраторов составляет

что гораздо меньше, чем 2n при реальных значениях n.   

Рисунок 32 – Структура ЗУ типа 3D с одноразрядной организацией

 

     ЗУ типа ROM (см. рисунок 33) структуры 2DM для матрицы запоминающих элементов с адресацией от дешифратора DCx , который выбирает целую строку.

Рисунок 33 – Структура ЗУ типа 2DM для ROM

 

         Однако в отличие от структуры 2D, длина строки не равна разрядности хранимых слов, а многократно ее превышает. При этом число строк матрицы уменьшается и, соответственно, уменьшается число выходов DC. Для выбора одной из строк служат не все разряды адресного кода, а их часть An-1... Ak. Остальные разряды адреса (Ak-1…A0) используются, чтобы выбрать необходимое слово из того множества слов, которое содержится в строке. Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды Ak-1…A0. Длина строки равна m2k, где m - разрядность хранимых слов. Из каждого "отрезка" строки длиной 2k мультиплексор выбирает один бит. На выходах мультиплексоров формируется выходное слово. По разрешению сигнала CS, поступающего на входы ОЕ управляемых буферов с тремя состояниями, выходное слово передается на внешнюю шину.

         Элементом связи в масочных ЗУ могут быть диоды, биполярные транзисторы, МОП-транзисторы и т. д. В матрице диодного ROM(M) (см. рисунок 34) горизонтальные линии являются линиями выборки слов, а вертикальные - линиями считывания. Считываемое слово определяется расположением диодов в узлах координатной сетки. При наличии диода высокий потенциал выбранной горизонтальной линии передается на соответствующую вертикальную линию, и в данном разряде слова появляется сигнал логической единицы. При отсутствии диода потенциал близок к нулевому, т. к. вертикальная линия через резистор связана с землей.

 

Рисунок 34 – Диодная матрица масочного ЗУ

         В ЗУ типа PROM микросхемы программируются устранением специальных перемычек. После программирования остаются только необходимые.

         На рисунке 35 показан многоэмиттерный транзистор (МЭТ) с плавкими перемычками.

Рисунок 35 – Схема МЭТ с плавкими перемычками

 

         Выходы этого ЗЭ передаются во внешние цепи через буферные каскады с тремя состояниями, работа которых разрешается сигналом ОЕ. При этом сигнал разрешения работы формирователей импульсов программирования OEF отсутствует, и они не влияют на работу схемы. При программировании буферы данных переводятся в третье состояние (ОЕ = 0), а работа формирователей F разрешается. Слово, которое нужно записать в данной ячейке, подается на линии данных D7...D0. Те разряды слова, в которых имеются единицы, будут иметь на выходах формирователей низкий уровень напряжения. Соответствующие эмиттеры МЭТ окажутся под низким напряжением, и через них пройдет ток прожигания перемычки. При чтении отсутствие перемычки даст нулевой сигнал на вход буфера данных. Так как буфер инвертирующий, с его выхода снимется единичный сигнал, т. е. тот, который и записывался. Адресация обеспечивается дешифратором адреса, подающим высокий уровень потенциала на базу адресуемого МЭТ.

 

Лекция 12 Организация внутренней памяти ЭВМ: оперативных, сверхоперативных, постоянных, КЭШ и ФЛЭШ памяти

 

Память является одним из основных элементов любой вычислительной сис­темы. Элементы памяти в том или ином виде присутствуют в каждом конст­руктивном модуле PC, характеристики оперативной памяти которых определяют быстродействие всей систе­мы. Без этих элементов работа PC просто невозможна. Оперативная па­мять — временная память, т. е. данные хранятся в ней только до выключе­ния PC. Для долговременного хранения информации служат дискеты, винчестеры, компакт-диски и т. п.

Конструктивно они выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить (скорее всего, увеличить) объем оперативной памяти PC.

 

 

Рисунок 36

 

Чтобы CPU мог выполнять программы, они должны быть загружены в опе­ративную рабочую память (ОП, ОЗУ), т. е. в память, доступную для программ пользова­теля. К данным, находящимся в оперативной памяти (Random Access Memory, RAMПамять с произвольным доступом), CPU имеет непосредственный доступ, а к периферийной, или внешней памяти (гибким и жестким дис­кам) — через буфер, являющийся также разновидностью оперативной памяти, недоступной пользователю, не говоря о том, что это устройства с механическим доступом к информации.

Преимущество RAM – это малое время доступа к данным, находящимся в RAM, поэтому скорость их обработки велика. Если бы информация считывалась/записывалась только с внешних носителей, то скорость РС была бы несоизмеримо медленнее.

Недостаток оперативной памяти состоит в том, что она временная, т. е. при отключении питания оперативная память полностью очищается, и данные, не записанные на внешний носитель, будут потеряны.

Основная задача RAM — предоставлять по требованию CPU необходимую информацию. Это означает, что данные в любой момент должны быть дос­тупны для обработки.

Запоминающим элементом динамической памяти является конденсатор, который может находиться в заряженном или разряженном состоянии. Если конденсатор заряжен, то в ячейку записана логическая 1, если разряжен — логический 0. В реальном конденсаторе существует ток утечки, поэтому информация, записанная в динамическую память, со временем будет утра­чена, так как конденсаторы запоминающих элементов полностью разрядятся. Оперативная память от­носится к категории динамической памяти: ее содержимое остается неиз­менным в течение очень короткого промежутка времени, поэтому память должна периодически обновляться. Этот процесс называется регенерацией памяти (Refresh). Это означает, что CPU имеет доступ к данным, находящимся в RAM, только в течение циклов, свободных от регенерации.

Единственным способом регенерации хранимой в памяти информации является выполнение операции чтения/записи данных. Если информация заносится в динамическую память, а затем в течение нескольких миллисекунд остается невостребованной, она будет утрачена, так как конденсаторы запоминающих элементов полностью разрядятся. Регенерация памяти происходит при выполнении каждой операции чтения или записи. Однако нет гарантии, что при выполнении любой программы произойдет обращение ко всем ячейкам памяти, поэтому имеется специаль­ная схема, которая через определенные промежутки времени (например, каждые 2 мс) будет осуществлять доступ (для считывания) ко всем строкам памяти. В эти моменты CPU находится в состоянии ожидания. За один цикл схема регенерирует все строки динамической памяти.

Ячейки памяти организованы в матрицу, состоящую из строк и столбцов. Полный адрес ячейки данных включает два компонента — адрес строки (row Адрес, бит) и адрес столбца (column Адрес, бит). На рисунке   представлена матрица, состоящая из 32 строк и 32 столбцов, то есть из 1024 ячеек.

 

Рисунок 37 Структурная схема динамической памяти

 

Когда CPU (или устройство, использующее канал DMA) обращается к памяти для чтения информации, на входы микросхемы поступает строб вывода данных ОЕ (Output Enabled], затем подается адрес строки и одновременно с ним (или с задержкой) сигнал RAS (Row Адрес, бит Strobe]. Это означает, что каж­дая шина столбца соединяется с ячейкой памяти выбранной строки. Адрес ячейки поступает по адресным линиям (в нашем случае их десять) на дешиф­ратор, который преобразует поступивший набор нулей и единиц в номер строки. Емкость конденсатора очень мала (доли пикофарады), и его заряд то­же мал, поэтому используется усилитель, подключенный к каждой шине столбца динамической памяти. Информация считывается со всей строки за­поминающих элементов одновременно и помещается в буфер ввода/вывода.

С незначительной задержкой после сигнала RAS на входы динамической памяти подается адрес столбца и сигнал CAS (Column Адрес, бит Strobe). При чтении данные выбираются из буфера ввода/вывода и поступают на выход динамической памяти в соответствии с адресом столбца.

При считывании информации из ячеек памяти происходит ее разрушение, поэтому производится перезапись считанной информации: выходы регистра строки снова соединяются с общими шинами столбцов памяти, чтобы пере­записать считанную информацию из строки. Если ячейка имела заряд, то она снова будет заряжена еще до завершения цикла чтения. На ячейки, ко­торые не имели заряда, напряжение не подается.

Если выполняется запись в память, то подается строб записи WE (Write Enable) и информация поступает на соответствующую шину столбца не из буфера, а с входа памяти в соответствии с адресом столбца. Таким образом, прохождение данных при записи задается комбинацией сигналов, опреде­ляющих адрес столбца и строки, а также сигналом разрешения записи дан­ных в память.

Основными характеристиками элементов (микросхем) памяти являются:

-          тип;

-          емкость;

-          разрядность;

-          быстродействие;

-          временная диаграмма.

Память долговременного хранения

ROM  практически не применяются, т.к. программирование этих микросхем осуществляется на стадии их разработки и код изменить невозможно. PROM - Programmable ROM. Эти микросхемы программируются специальными программаторами однократно после изготовления. EPROMErasable  PROM – самые распространенные носители BIOS системы и карт расширения. Стираемые и многократно перепрограммируемые микросхемы. erase – стирание. Программатор подключается через COM – или  LPT – порт. Стирание информации делается ультрафиолетовым излучением через специальное окно, имеющееся в корпусе микросхемы (если окна нет – стирается рентгеновским излучением). Под воздействием излучения вся информация стирается одновременно за несколько минут. Запись  производится побайтно в любую ячейку микросхемы. После записи окно заклеивается с целью защиты информации флэш память. EEPROMElectrically Erasable Programmable ROM – информация удаляется с помощью электрического сигнала.

Flash EEPROM  может быть перезаписана не с помощью специального программатора, а в ПК. Основные ее преимущества по сравнению с EEPROM:

-       малое время доступа;

-       малое время стирания информации.

Большинство микросхем BIOS относятся к этому типу. Для установки новой версии BIOS нужна специальная программа – прошивальщик, которая поставляется с материнской платой на дискете или CD-ROM и файл с новой системой BIOS.

 

Флэш-память обладает рядом преимуществ в использовании: высокая надежность и ударопрочность, малое энергопотребление. Одним из основных преимуществ флэш-памяти является ее компактность, она используется в столь популярных сейчас портативных устройствах. К тому же, при своей компактности, флэш-память обладает достаточной емкостью.

Флэш-память - история происхождения

Флэш-память появилась в 1984, впервые она была представлена компанией Toshiba. Однако флэш-память начали массово производить и использовать только несколько лет назад с появлением цифровых фотокамер. Сейчас флэш-память постепенно все активнее применяется для хранения и переноса данных. Производятся различные карты флэш-памяти: Compact Flash, Memory Stick, Multimedia Card, SD Card, Smart Media, xD-Picture Card и почти не используется PC-Card. Это разные стандарты карт флэш-памяти, они отличаются размером, весом, интерфейсом и количеством контактов.

Флэш-память - использование

В наше время флэш-память нашла широкий спектр применения. Сначала она использовалась в цифровых фотоаппаратах. Сейчас флэш-память выпускается для огромного количества разнообразных устройств: диктофонов, плееров, мобильных телефонов и смартфонов, КПК и т.д.

FRAM.

Сегнетоэлектрическое ОЗУ (далее FRAM – Ferroelectric RAM) обладает уникальными свойствами, которые отличают ее от других видов запоминающих устройств. Традиционные полупроводниковые запоминающие устройства можно разделить на две основные группы – энергозависимые и энергонезависимые. К энергозависимой памяти относятся статические оперативные запоминающие устройства (СОЗУ) и динамические оперативные запоминающие устройства (ДОЗУ). Их общим свойством является нарушение содержимого ячеек памяти после снятия напряжения питания. С прикладной точки зрения ОЗУ очень просты в использовании и обладают высоким быстродействием чтения и записи, но также имеют досадную особенность терять данные при исчезновении питания.

Энергонезависимая память (ЭНП) не теряет данных при снятии питания. Однако все основные типы ЭНП имеют общие истоки, которые берут свое начало от постоянных запоминающих устройств (ПЗУ). Тем, кто знаком с этой технологией, знает насколько сложно осуществить запись информации в ПЗУ, а выполнить запись мгновенно вообще не возможно. Все последующие приемники этой технологии связаны проблемой сложности записи в них новой информации. В настоящее время известны следующие разновидности этой технологии: электрически перепрограммируемое ПЗУ - ЭППЗУ (морально устаревшая технология), электрически стираемое перепрограммируемое ПЗУ – ЭСППЗУ и флэш-память. Технологии на основе ПЗУ обладают медленной записью, подвержены существенному износу при записи, ограничивая количество циклов программирования, и требуют много энергии для программирования.

Отличием FRAM является использование технологии ОЗУ, при этом сохраняя энергонезависимость подобно ПЗУ. Таким образом, FRAM заполняет пробел между двумя категориями и создает нечто новое – энергонезависимое ОЗУ.

Технология FRAM

Ядром сегнетоэлектрической FRAM-технологии от Ramtron являются сегнетоэлектрические кристаллы, которые позволяют законченным FRAM-изделиям работать подобно ОЗУ, при этом обеспечивая энергонезависимость хранения данных. Когда электрическое поле прикладывается к сегнетоэлектрическому кристаллу, центральный атом движется в его направлении. Т.к. атом перемещается в пределах кристалла, он проходит энергетический барьер, сопровождаемый спонтанной поляризацией. Внутренняя схема позволяет определить величину заряда и состояние памяти. Если электрическое поле отведено от кристалла, то центральный атом остается в том же положении, определяя состояние памяти. Поэтому FRAM не нуждается в регенерации и после отключения питания сохраняет свое содержимое. Все происходит быстро и без износа!

Сегнетоэлектрическая память

Сегнетоэлектрик - это диэлектрик или полупроводник, обладающий в определенном диапазоне температур спонтанной поляризацией. При понижении температуры в таком веществе происходит фазовый переход, связанный с искажением кристаллической структуры, что и приводит к появлению спонтанной поляризации. Спонтанная поляризация сегнетоэлектрика легко изменяется под влиянием внешних воздействий, в частности, при приложении электрического поля. Именно это свойство сегнетоэлектриков используется для создания запоминающих устройств с произвольной выборкой (ЗУПВ). В литературе они получили название FRAM (Ferroelectric Random Access Memory). В запоминающем устройстве FRAM-типа сегнетоэлектрик (как правило, перовскит PbZn1- xTixO3) создает конденсаторную структуру, в которой формируются два состояния спонтанной поляризации. При приложении напряжения к электродам конденсатора сегнетоэлектрик оказывается одном из этих состояний, оно сохраняется и после снятия электрического поля. Приложение электрического поля той же величины, но противоположного направления, заставляет сегнетоэлектрик переключаться во второе стабильное состояние поляризации. Считывание состояния памяти (0 или 1) осуществляется с помощью дополнительного зарядового импульса, подаваемого на опорный конденсатор.

 

  

 

Список литературы 

1.      Лачин В.И., Савелов Н.С. Электроника: Учеб. пособие – Ростов н/Д: Феникс, 2009. – 704с.

2.      Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника:  Учебник для вузов. Под ред. О.П.Глудкина. – М.: Горячая линия‑Телеком. 2005, – 768с.

3.      Степаненко И.П. Основы микроэлектроники: Учебное пособие для вузов. ‑ 2-е изд., перераб. и доп. – М.: Лаборатория Базовых Знаний, 2004. – 488с.

4.      Гусев В. Г., Гусев Ю. М. Электроника и микропроцессорная техника: Учеб.для вузов – М.: Высш. шк., 2006, – 800с.

5.      Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство – М.: Мир, 1982. – 512с.

6.      Гершунский Б.С. Основы электроники и микроэлектроники: Учебник для вузов – Киев: Высща школа, 1989. – 424с.

7.      Пейтон А.Дж, Волш.В. Аналоговая электроника на операционных усилителях. – М..: Бином, 1994. – 352с.

8.      Аналоговые и цифровые интегральные микросхемы. Справочное пособие /Под ред. С.В.Якубовского. – М.: Радио и связь, 1985. – 432с.

9.      Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств. – М.: Радио и связь, 2005. – 320с.

10. Фолкенберри Л. Применение операционных усилителей и линейных ИС. – М.: Мир, 1985. – 572с.

11. Алексенко А.Г. и др. Применение аналоговых ИС. – М.: Радио и связь, 1985. – 256с.

12. Алексенко А.Г. Основы микросхемотехники. ‑3-е изд. – БИНОМ.Лаб.знаний, 2004. – 448с.

13. Прянишников В.А. Электроника: Полный курс лекций. – СПб.: КОРОНА принт, Бином Пресс, 2006. – 416с.

14.   Жолшараева Т.М. Микроэлектроника. Интегральные микросхемы: Учебное пособие. Алматы: АИЭС, 2007. – 81 с.

15.    Т.М. Жолшараева. Схемотехника 1. Конспект лекций для студентов всех форм обучения специальности 050704 –Вычислительная техника и программное обеспечение. – Алматы: АИЭС, 2008. – 50 с.

 

Сводный план 2010 г. поз.1