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Introduction

Studying the physics course creates a fundamental base of engineering -
technical knowledge and skills of graduates of higher technical school and forms
their scientific outlook.

The main objectives of the course are:

1) formation of students' skills in using fundamental laws, classical physics
theories and methods of physical research as the basis of their professional activity;

2) formation of students' creative thinking and scientific outlook, skills of
independent cognitive activity, the ability to modulate physical situations.
The course "Physics 2" studies such areas as "Maxwell's equations”, "Physics of
oscillations and waves," "Quantum physics and physics of atom", "Solid-state
physics, nuclear and elementary particles".

Knowledge and skills acquired in the study of physics constitute the
foundation needed in the study of technical disciplines.



lLecture ~ 1. EI ect rMawallsgptheotybases i nduct |

Lecture's content: phenomena and law of electromagnetic induction, a basis
of Maxwell's theory for an electromagnetic field are briefly described in the
lecture.

1.1 Phenomenon and law of electromagnetic induction

Emergence of electromotive forces under the influence of magnetic fields is
called electromagnetic inductiofFaraday, 1831). Cause of electric current at the
movement of the conductor in a magnetic field is explained by the action of
Lorentz force arising at conductor's movement. Let's consider the scheme in figure
1.1 when two parallel wires of AB and CD are placed in a homogeneous magnetic
field, perpendicular to the plane of the drawing and directed to us. The left wires
AB and CD are closed, the right ones are opened. The conducting rod BC can freely
slide along wires. When the rod moves the speed & to the right, electrons move
with it. Each moving charge j in a magnetic field is affected by Lorentz force

F =du8]. (1.1)
As a result electrons will start moving in the rod up, i.e. the current will go

down. It is induction current Lorentz force in the described experience plays a role
of a foreign force exciting electric current.
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Figure 1.1

In this case a foreign electric field E is equal to:
E' =|u8|. (1.2)

The electromotive force created by this field is called the electromotive force
of induction and is marked & . In this case

e =-uBl, (1.3)



The minus sign is put because the foreign field is directed against a positive
round of the contour determined by a vector B by the rule of the right screw. Thus,

dF
=, 1.4
&= (1.4)
So, this is Faradey's law. Faradey's law states: that the inductedEMF in a
circuit is directly proportional to the timeate of change of the magnetic flux
through the circuitUnit of measure EMF induction — volt (V).
Lenz rule defines the sign «minus» in the law of electromagnetic induction

and is a consequence of the law of energy conservation: induction current is ahays
directed so that to counteract the reason causing it.

1.2 Vortical electric field

If the contour is based in a variable magnetic field, the emergence of
induction current testifies that the magnetic field changing in time causes
emergence of foreign forces in a contour. By the nature they cannot be magnetic as
they cannot actuate based charges in motion. The role of foreign forces, according
to Maxwell's hypothesis, plays vortical electric field E, which is generated by a
variable magnetic field (appendix 1). Then circulation of a vector E by a motionless
contour is equal to:

o= W (1.5)
L it
or
CC 3 C
A7 = - n~t¢TBdS' (1.6)

In a differential form we will write it as
[pE] = - HEB' (1.7)

This electric field, as well as a magnetic field is vortical. It found application
in the induction accelerator of electrons — the betatron.

1.3 Self-induction. Inductance

The electric current flowing in the closed contour creates round itself a
magnetic field, which induction, by Biot-Savart-Laplace's law is proportional to the
current. The magnetic flux A is linked to a contour, therefore it is proportional to
the current of | in the contour:



F=L, (1.8)

where the coefficient of proportionality L is called inductanceof a contour.

If the force of current in a contour changes the magnetic flux linked to it
changes as well; therefore, EMF will be induced in a contour. The emergence of
EMF induction in the conducting contour at current's changing is called a self-
induction,

Inductance unit of measurement is henry(Hn): 1 Hn=1 Whb/A.

Using formula (1.8), it is possible to receive expression for inductance of the
solenoid which depends on number of turns of the solenoid N, its length ?, areas of
Sand magnetic permeability m of substance the solenoid core is made of

L:ngm¥. (1.9)

If to apply to the self-induction phenomenon Faraday's law in case that the
contour is not deformed and magnetic permeability does not change, we will receive

.
e = Ldt' (1.10)

Characteristic manifestations of a self-induction take place at circuit's closing
and disconnection of current in a circuit (appendix 1).

1.4 Mutual induction

Let's consider two motionless contours (1 and 2)
are located rather close to each other. At change of
current in one of the contours in the other contour arises
EMF induction. This phenomenon is called as mutual
induction EMF, arising in contours 1 and 2, are equal to:

_I—'--_
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-

Figure 1.2
eg=-—2=-L,—2;, =-—=2=-1L,—. (1.11)

Coefficients of proportionality L,, and L,, are called mutual inductancef

contours. The calculations confirmed by the experience show that for lack of
ferromagnetic materials:

L, = Lo (1.12)



It is possible to show that mutual inductance of two coils with the number of
turns N,, N,, reeled up on the general toroidal core equals to:

L,=L,, = ngnMS (1.13)

Transformers operating is based on the phenomenon of mutual induction.

1.5 Energy of a magnetic field

The magnetic field is the carrier of energy. It is received through work spent
by current for creation of a magnetic field. To change a magnetic flux at a size of
dF it is necessary to make work dA=IdF =LIdl . Then the work on creating of a
magnetic flux will be equal to:

|
A=ldl =L1%/2.
0
Therefore, magnetic energy of current can be defined as:

W=LI12%/2. (1.14)

The energy of a magnetic field can be presented as a function of the sizes
characterizing this field in surrounding space. It is possible to show that the formula
(1.14) can be transformed into

myn 2

W = Vv, (1.15)

where V is the volume of the space occupied by a magnetic field. Then the
volumetric energy density equals:

W=

W _ mpi®
> .

. (1.16)

Formula (1.16) is valid both for homogeneous and non-uniform fields. It is
true for variable fields as well. Mind that thls exeressmn is only for the
environments where the dependence of vector I” from 1 is linear, i.e. it concerns
only para-and diamagnetics.

1.6 Displacement current

The theorem of circulation of a magnetic field intensity

fHA?=SI = fjds, (1.17)
L S



becomes incorrect in case of alternating fields. For eliminating this discrepancy
Maxwell entered the concept of displacement current (appendix 3). The density of
the current of displacement is equal to j, =uD/dt and the equation is:

FHA7=f{ ]+ D/ )dS. (1.18)

1.7 System of Maxwell’s equations

Having added the basic facts from electromagnetism area with establishment
of magnetic actions of displacement currents, Maxwell wrote the system of the
fundamental equations of electrodynamics. There are four equations in integrated
and differential forms. They are:

Table 1.1
No Integrated form Differential form
_C 3 C C 3
L mas=- f8as rotE=- KB
L S M pt
C C A&C upDs.C C Cup
2 ﬁ—|d’?: y +E§ds rotH:J+£
L sC tx t
3 | fpdsS=0 diuB=0
S
4 | fpdS=fy dV diuD = r
S \%
Material equations
5 D=¢geE
6 B=mmH
] =gE

The important conclusion follows from the first two equations: variable
electric and magnetic fields are inseparablykia with each other, forming
uniform electromagnetic field.

The third and the fourth equations testify that electric field has sources
electric charges, but magnetic charges are ahstetefore Maxwell's equations
are not symmetric with regard to electric and magnetic fields. This three equations
(5, 6, 7) in table 1.1 are called material equations as they show individual properties
of the environment.

The four equations must be supplemented by three equations reflected the
relationship between the main characteristics of electromagnetic fields and currents.
Here D is electric displacement, E - electric field, B - magnetic field, H - intensity
of magnetic field, j - the vector of electric current density , E* - electric field of
foreign forces, y -conductivity.




Let's note that Maxwell's equations cannot be removed. It is necessary to
consider them as the main axioms of classical electrodynamics received by
generalization of the experimental facts.

2L e c t u2Zr @scillatory processes

Lecture's content: mechanical and electromagnetic oscillations are briefly
given in the lecture.

Periodic motion or fluctuation is a process periodically repeatad time
There arefollowing fluctuations: free, compelled, self-oscillations, parametrical
(appendix 5).

Harmonic oscillations are called periodic ones taking place according to
cosine (or sine) law.

2.1 Free harmonic oscillations
Free harmonic oscillations can be presented as:
S{t) = Acodwgt +/ o), (2.1)

where A - amplitudeof fluctuations (oscillations);
w, - own circularfrequency;

(wt +/ ,) - phase of fluctuations;
/o, - aninitial phasewhen t=0 .
Free harmonic oscillations are described by the uniform differential equation
of the second order:
#ryfs=0 (&=d?s/dt). (2.2)

The solution of equation (2.2) is the equation of harmonious periodic motion
(2.1). Graphs of value change S, &, & from t are given in figure 2.1.
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Figure 2.1 — Diagrams of value change S, %, & from t.
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Oscillatory system is calledn oscillator,and the system making harmonic
oscillations is called harmonious oscillator. The differential equations and
characteristics of various oscillators are given in appendix 5.

2.2 Energy of harmonic oscillations

Total energy W of mechanical oscillations is the sum of kinetic w, and
potential w,_ energy. Using the formulae from the table of Item 1 (appendix 5) it is
possible to write down:

2 2 2
W, = mg = mW2§A sin®(uyt +/ ) = m”fA [1- cof2mt+2/ )]; (2.3)
2 2
W, =90 =K cog it + ) = A i codaugt + ) (2.4)
2 2
and W =W, +W, = k% = mWZTA =W, 0 =W, = CONSL. (2.5)

Graphs of dependence W, ,w, and W from time are given in appendix 6. The
total energy of an electromagnetic field w of an oscillatory contour is W =W, +W, .
An electric field with energy W, appears between the capacitor plates while it
charges. There is a magnetic field with energy W, (appendix 7) in the coil of
inductance when the capacitor discharges. So, total energy W is experienced:

W =W, +W_ :q—m:h:const (2.6)
2C 2

2.3 Addition of oscillations of identical and mutually perpendicular
directions

Finding the law of the resulting oscillations of the system as addition of
periodic motions is a process when this system simultaneously participates in
several oscillatory processes.

A harmonic oscillation can be presented by means of the rotatingamplitude
vector(appendix 8).

If the system participates simultaneously in two oscillations the equations of
which expressed:

X =A COE/\Wot +/ 01)1 X, = A CO{(Wot +/ 02)1 (2.7)

10



The addition can be made by the method of vector diagramasing the rotating
amplitude vector (appendix 9). A projection of the resulting vector ¢ on axis X is
equal to the sum of projections of composed vectors

X=X + X,

The resulting amplitude, as seen in the drawing in appendix 9 is determined
by the theorem of cosines:

A=A+ A +2AA CO%/' 02'/01)’ (2.8)
and the initial phase j, of the resulting fluctuation by a tangent:

_ ASiIj gt Ay o _ (2.9)
A_COg‘ 01+A2C0$ 02

o
The equation of the resulting harmonic fluctuation is
x = Acogmt +5 ;).

L e tconssder the analysis of the equations in the appendix 10.
If periodic motions take place simultaneously along axis x and axis vy, their
equations can be written down in such a way:

x=Acogat, y=Bcogut +/ ,), (2.10)

where j , - difference of phases of two oscillations (shift of phases).

Such harmonic oscillations can take place if periodic harmonious signals are
sent on to operating horizontal and vertical plates of an oscillograph. To define
resulting oscillation trajectory it is necessary to exclude time from the equations
(2.10). Then we will have the trajectory equation:

2
X . m/cosfo+Jy—:sin2j0. (2.11)

2

Special cases resulting from this equation are given in appendix 11.
Trajectories of the resulting movement are the complex curves called by Lissazhu's
figures if frequencies of mutually perpendicular periodic oscillations are not
identical.

2.4 Free damping and forced electromagnetic oscillations

2.4.1 Free damping oscillations
11



The periodic oscillations of ideal systems
g -pt are given in appendix 5, table 5.1 where the
- energy stored by the system is not transformed

A Into an other types of energy, i.e. there is no
[\ /\ energy dissipationin it.

0 v \/ \/ T The real oscillatory contour unlike ideal
one, (appendix 12) contains the resistor of
resistance R connected in series with the

condenser and the coil of inductance. In this case

Figure 2.2 the differential equation of damping oscillation is
expressed:
g+ 208+ 140 =0, (2.12)

where b - coefficient of damping = Z—'T_.

The solution of the equation (2.12) is the equation of damping oscillations

q=0,.e * cogut +/ ,), (2.13)

where constants q,,, (initial amplitude) and ;, (an initial phase) depend on
initial conditions, i.e. from values g and & in a primary time point. The graphs of

q(t) IS shown in figure 2.2.
The fluctuation period is equal to:

T=2p/\ug - b?
w=\u, - b*. (2.14)

We can write a time period and frequency of electromagnetic damping
oscillations using the earlier entered values:

and frequency

T =2p/J1/(LC) - R?/(41?) and w=1/(LC)’ - R*/(aL?). (2.15)

Relaxation timas called the time period while damping oscillation amplitude
decreases in e times and is expressed: ¢ =1/ 5.

There is a logarithmic damping decrement as a quantitative characteristic of
decreasing amplitude speed. Logarithmic damping decrementasatural logarithm
of the ratio of amplitude values corresponding to points of time different for the
period

12



/:|nA(f$)T):bT:

where N, - a number of fluctuations while amplitude decreases in e time.

A real oscillatory contour is characterized by quality factorQ, equal to 2o
multiplied by the energy ratio W(t) of system fluctuations in any time point t to
decreasing of the energy within the conditional period of damping oscillations

N|—|

-1
0 (2.16)

W(t)

Q= ZpW(t)- W(t+T)'

So, the contour quality factor is equal to:
Q=§= .. (2.17)

2.4.2 Forced electromagnetic oscillations. Resonance.
Forced electromagnetic oscillations take place if variable EMF is connected
in series in contour with elements R- L- C :

e=e,cout.

In this case the equation of an oscillatory contour is:

Lﬂ+ RI + 9= e cosm
dt C
or
g+ 26+ uzq=(e,/L)cosnt . (2.18)
The particular solution of this equation is equal to:
q =0, codut-y), (2.19)
where g, - charge amplitude on the condenser;
y - difference of phases between charge oscillations and external EMF.
Differentiating (2.19) on t we can receive the current in a contour:
| == uq, sinut-y)=uq,codut-y +p/2). (2.20)
We can show from vector diagram for real oscillatory contour (appendix 12)
that:

13
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m

Om =

o 162-
w. R+ 3t -
J ¢ uc?

We can see the charge amplitude q,, (and phase ¢ ) of the forc
oscillations is defined by EMF frequency at the given values of e ,R L,C. The
less is the difference of own frequency w, and frequency of the variable EMF the

more amplitude d,, is. Resonance ishe phenomenon of sharpchease of forced

periodic oscillationsamplitude at a certain value of external frequency influence
External influence (EMF) frequency is a resonant frequencyhen the resonance
takes place (in detail in appendix 13).

3 Lecture = 3. Wave processes

Lectured s ¢ o thet peoaess of periodic oscillations propagation, elastic
waves and dispersion of waves are described in the lecture.
Lecture objective: to study wave processes.

3.1 Elastic wave and equation of a wave

Extendingperiodic motion is called wave processn elastic wave ighe
propagating melganical process of indignation in aelastic medium Periodic
motion can spread in elastic medium from a particle to a particle with some speed
due to interaction between them if fluctuation in the environment is excited. That
doesn't make particles move but only fluctuate at balance position. Therefore, the
main property of waves is to transfer energy without transferring a substance.

There are longitudinal and transverse wase depending on direction of
particles movements near their spread balance positions (along or across the
direction of wave propagation).

Transverse waves extend in media resisting shift (in solids). Longitudinal
waves propagate in environments resisting to compression and stretching (in
liquids, gases and solids).

Locus fluctuating in an identical phase is called a wave surfacdt reached by
indignationat the given timgoint is called the front of a waveThere are many
wave surfaces but the wave front is one. Wave surfaces are not mobile, and the
wave front moves. A wave can be flat or spherical depending on a form of wave
surface (the front of a wave).

The wave is characterized by the following parameters: / - wavelength of
wave the distance passed per a period of fluctuation time; v - period time of one
fluctuation; v - frequency,number of fluctuations per a unit of time. There is
dependence between these parameters expressed by the formulas:

14



/| =u®, u=/ r

In general, the wave equation represents the function of time and three spatial
coordinates. The shift of the environment particle from balance position x is a
function of coordinate x and time t, i.e. x=f(xt) at distribution of indignation
along an x axis.

At some distance x from the source periodic oscillations of particles will lag
behind in time ¢ =x/u(u - speed of wave propagation) if fluctuations of the points

lying on the plane x=0 are described by the function x(0,t)= Acos@t +/,). So, the
equation offluctuationsof the particles lying on the plane X is expressed:

x(x,t) = Acogut - x/u)+/ ,].
The wave numbes used for the characteristic of waves:

k=R 2P _W (3.1)

it shows how many lengths of waves there are within a piece of length 2p.
Therefore, it is possible to write down:

x(x,t) = Acos@t - kx+/,), (3.2)

where / , is an initial phase of a wave;
(ut - kx+/,) - phase of a flat wave.

The equation (3.2) is the equation of the flat running wave propagating along
axes x in not absorbing energy medium.

Running waves arealled the waves transferring energy in space. The speed
u in the equation (3.1) is the phase speeaf a wave, i.e. wave propagation speed
with a certain value of a wave phase.

If the energy is absorbed by environment we'll have the following
equation

x=Age%cosm - kx+/,),

where g is coefficient of damping of a wave.

A wave vector k is introduced when a flat can travel wave in any direction
characterized by a single vector 7, perpendicular to the front of a wave:

C
Sif-2

In this case the equation of a flat wave is expressed:

15



x(r7t) = Acosiat - ki '+ o),
where kr'= k,&+k, O+k, Q.

3.2 Wave equation

There are equations of wave processes as generalized expressions of wave
similar to the main equation of dynamics describing all possible movements of a
material point. They are differential equations in the particular derivatives
connecting changes of functions characterizing a wave in time and space.

They are called thewave equationsAn example of a wave equation of the
flat running wave along axis x is:

Wex 1 pix
o (3:3)

The equation of a flat wave (3.2) is the solution of the wave equation (3.3).
Generally it look like (3.4) when the shift is the function of four variables:

pox= L HX (3.4)
where
D2y = X WX W
- 2 2 2"
>y

3.3 Energy of a wave. Umov's vector

The kinetic energy of medium volume Dv where an elastic wave travels is
equal to (appendix 14):

DW, =L pew sin?(ut - kx)DV,
2

where A—amplitude of the wave propagating along axes X;

} —environment density;

¥ —frequency.

The considered volume also has potential energy (appendix 14):

DW, = L Az sin?(ut - kx)DV .
2

The total energy is equal to the sum DW, and Dw,

DW = DW, +DW, = 7 1#A”sin’(ut - kx)DV . (3.5)

16



Energy density cabe calculated if this energy whivided by the contained

volume

w=2W -, WA? sin®(ut - k).
DV

Density of energy changes in each point of the environment according to the
law of square sine, therefore the average density of energy is equal to:

(w) :%r WA?, (3.6)

Energy dw, transferred by a wave through some surface by unit of time dt, is
called energy streamian through this surface:

an :d_W_
dt

The energy stream can be various in differentpoints. That s why
of energy stream density is introduced. It is an energy stream through a single
platform, perpendicular to the direction of energy transfer:

. da dw
17 4s Tatas (3.7)

Energy transfer speed by a wave for harmonious (sinusoidal) waves is equal
to phase speed v. Energy dwinside a slant cylinder (Figure 3.1) with the basis of
area ds and the forming length vdt,

dS  n dW = wudtdScosa = wudtdS .
o
v i We will receive the formula for energy stream density
if this formula is put in (3.7)
vdt j=w.
Figure 3.1

We can use Umov's vectorj for determination of
stream density and its direction:

=W, (3.8)

C wC. . . .
where o'= (misa speed vector. It is normal to a wave surface in this place

and its module is equal to the phase speed of a wave.

17
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The average time value of energy stream density is called wave intensity
B‘ W)y == r WA?u

3.4 Wave package. Group speed. Dispersion of waves

Let's consider the simplest group of waves - quasisinusoidal wave. It travels
in the linear medium as a superposition of two flat waves with close frequencies:

x, = Acodut - kx) and x, = A cog(w+dwt - (k +dK)x],

where k:; (k+dk)=(w+dw)/u,, duaa, dkale.

1

The result of addition of fluctuations is:
x = 2A, cod(tdw- xdK)/ 2]codut - kx).
This wave is different in amplitude from a sinusoidal wave:
A=2A, codtdw- xdK)/2]. (3.9)

Its amplitude is slowly changing function of coordinate x and time t. So, the
speed of a spreading package is the speed of a point where amplitude A has any
maximum value (center of a wave package) A=2A,. As in this point the energy

density is maximum so, group speed is the speedvedve energyransferring
The center of a wave package moves according to the law tdw- xdk=cons;,
therefore group speed is equal to:

As w=tk, k=2p//, dk=2pd/ //% (/ - wavelength),

so, u= Iy QY oy Y (3.10)
dk dk d/

Equation (3.10) shows that group speed can be both less, and more than phase
speed v that is connected with dependence of phase speed on wavelength
(frequency), i.e. on medium properties.

The apendence of phaspeed of monochromatic waves fsequerty (or
wavelength) is calledispersion.

In the absence of dispersion a wave conserves its form.

18



4 Lecture - 4. Electromagnetic waves

Lect ur e 6s differenat equation, energy and intensity of
electromagnetic waves are briefly given in this lecture.
Lecture objective: to study electromagnetic waves.

Analysis of Maxwell's theory shows that the time-varying magnetic field
generates a varying electric field and time-varying electric field produces a
magnetic field. If a vortex electric field is initiated in a point of space a sequence of
mutual transformations of electric and magnetic fields occurs in surrounding space
of charges, i.e a variable magnetic field spreading in time and space is emerged.
This process is periodic and represents an electromagnetic wave

4.1 Differential equation of an electromagnetic wave and its properties

Maxwell's equations for an electromagnetic field far from free electric
charges generating it (r =0) and macroscopic currents (j =0) are expressed:

C 5 C D
otE=- ¥ o=
it Mt

dvD'=0, diB=0.

Taking into account D= eoeﬁ and B = ngan , these equations can be written in
the following form:

v

C g C o o
rotE = - n@m%; rotH :eoe%; divE =0, divH =0, (4.1)

where mand e - constants of permeability of the medium.

Vectors E and H as well as their components on coordinate axes will not
depend on coordinates y and zin the case of flat wave travelling along the positive
direction of axis x. In this case it is possible to have, two independent groups of the
equations from equations (4.1) presented in projections on coordinate axis:

E:-/’r&/ﬂ&’ pJ—'z:_eer; (42)
X pt pX pt
ME, _ pH, W, LE

z — y’ Y = 3 z 43

T IR T LT 43)

and equations

19



/73/77%:0, eoe““EIX =0. (4.4)

Equations (4.2) can be given as:

IJZE 2E 2HZ ZHZ
Wzy =ee fm% and ““XZ =ge gm“uT (4.5)

The comparison of equations (4.5) with elastic wave equation (3.3) shows
that equations (4.5) are the electromagnetic wave equations.
Solutions of these equations are the functions:

E, =E,codut- kx+/,) and H, =H_codut- kx+/,). (4.6)

The main properties of electromagnetic waves follow from equations (4.2) -
(4.6).

4.1.1 Equations (4.4) show that E, and H, depend neither on X, nor t.
Therefore E, =H, =0 for a variable field of a flat wave and vectors E and H are
perpendicular to the direction of wave propagation, i.e. electromagnetic wave are
transverse.

4.1.2 The comparison of equations (4.5) with ones (3.3) shows that the phase
speedf an electromagnetic wave depends on medium properties:

1
u= : (4.7)
\Jeme 1
Speed of an electromagnetic wave in vacuum (e= m=1),
c=—1_ =380mis.
€T

4.1.3 Equations (4.5) testify tha\E vectors E and H of electromagnetic wave
fields are mutually perpendicular: &, E,H form a right screw system (figure 4.1).

Figure 4.1 Figure 4.2
20



4.1.4 The initial phases in equations (4.6) are equal: ;,=/, and
ek, = M.

Therefore, fluctuations of vectors E and H occur sinphase(in one phase)
(figure 4.2) and their instant values are connected by a ratio:

JagE= [mH (4.8)

The equations of flat wave propagating in homogeneous isotropic medium in
a vector form are expressed:

E=E,codut- kx+/ ), H=H,codut- kx+/).

4.1.5 In each point of an electromagnetic field vectors E and H make
harmonic oscillations of identical frequency (wave frequency), therefore an
electromagnetic wave is a monochromatiavave.

4.2 Energy of an electromagnetic wave. Poynting's vector

Energy transfer is connected with an electromagnetic wave. Energy density of
an electromagnetic field is equal to the sum of energy density of electric and

magnetic fields in an isotropic medium:

:eererngnHz-
2 2

w

The ratio between field vectors E and H of an electromagnetic wave (4.8)
shows that the energy volume density of electromagnetic waves is expressed:

w=e&E*=mmi’® =,/e,e ymEH = \/:]_,EH = EUH , (4.9)

where v - speed of a wave (4.7).
We will receive energy stream density S if expression (4.9) is multiplied by

S=wu=EH. (4.10)
As vectors E and H are mutually perpendicular and form a right screw
system (figure 4.1) with the direction of propagation, it is possible to express

formula (4.10) as:

S=|eH]. (4.11)
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Vector S is called Poynting's vectorlt is directed towards the propagation
of an electromagnetic wave and its module is equal to energy transferred by an
electromagnetic wave per a unit of time through a single platform, perpendicular to
the direction of wave propagation.

The energy density of a travelling harmonious electromagnetic wave is:

S=./e g mmEZcod(mt - kx).

Wave intensity 1 isequal to average value of energy stream density:
I =‘<§>‘=,/e & mmlEZ |12, (4.12)

I.e average value of a square cosine is 1/2.
4.3 Radiation of electromagnetic waves

Process of excitement of electromagnetic waves by any system in a space is
called wave radiationand the system is called radiating system

According to classical electrodynamics electromagnetic waves are excited by
moving electric charges with acceleration. An elementary radiating system is an
electric dipole and its moment & changes in time. Such dipole is called an
elementary vibratarlf a radiating system is electric neutral and its sizes are small in
comparison with radiated wave length / we have a wave zonéra /8, where r is the
distance from the system). In this case a radiation field is close to a radiation field of
an oscillator with the electric moment similar to the radiating system.

Moment & of a linear harnonious oscillatorchanges in time according to
the law

6= & cosut . (4.13)

In homogeneous isotropic medium duration of wave passing to the remote
points from a dipole in distance I and the phase of fluctuations are identical.
Therefore the wave front is spherical in a wave zone. Wave amplitude decreases
with the increase of distance r from the dipole:

Em~Hm~%sinq, (4.14)

where g - an angle between an axis of a dipole and a radius of vector r
(figure 4.3).

Figure 4.3 shows that vector E s directed to the meridian in each point of
the wave surface and vector H - tangentially to the parallel, forming the right screw
rule with Poynting's vector S. Intensity of a wave is
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1 .
I ~r—25|n2q. (4.15)

This dependence is represented by means of a directivity diagramof dipole
radiation (figure 4.4). Expression (4.14) and the given diagram show that the dipole
radiates as much as possible in the equatorial plane %:%g but along the axis

(; -
(g=0) it does not radiate. Power of radiation depends on the frequency of

oscillations and is proportional w*.

Figure 4.3 Figure 4.4

5 Lecture ~ 5. Wave optics

Lect ur e O basicccancepts ef mvave optics are given in the lecture.
Lecture objective: to study basic concepts of wave optics.

5.1 Light wave
Coincidence of electromagnetic waves speed value in vacuum

1
€7

fn= °©3A0m/s,

with the speed of light measured by astronomical methods served as the basis for
the conclusion that light is an electromagnetic waveAll properties of
electromagnetic waves are the same for the light.

Je mn (5.1)

is called a refraction index. The speed of electromagnetic waves or light in a
medium is:
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(5.2)

s>1=

Permeability constant /m does not differ practically from one unit for the
majority of transparent substances, therefore

n=.le. (5.3)
The length of a light wave in a medium is equal to:

/o

/] =0
n

where /, - wavelength in vacuum.
Light intensity | is defined by Poynting's vector S (4.11), therefore

| ~nE? =nA’, (5.4)

I.e. it is proportional to the medium refraction index and a square of a light wave
amplitude.

The vector of electric field intensity is used as a light vector since
physiological, photochemical, electric and other actions of light are caused by
oscillations of the electric vector.

Light waves are transverse, but in natural light (emitted by usual sources)
oscillations occur in the most various directions, perpendicular to a ray— a line
along which light energy extends. Existence of these oscillations is explained by
radiation of a shining body consisting from the waves emitted by its atoms. Process
of radiation of a separate atom lasts near 10° s. During this time wave trains
manage to be formed (discontinuous radiation of atoms in the form of separate
impulses). Wave trains impose on each other and form the light wave emitted by a
body. The plane of oscillations for each train is oriented in a random way, therefore
in the resulting wave the oscillations of various directions are equally probable.

5.2 Light interference. Coherence

The phenomenon of light interferenceconsists of mutual amplification of
light waves in one point of space and attenuation — in others while imposing. A
necessary condition of waves interference is their coherence

Coherence is coordinated passing of several oscillatory or wave processes in
time and space.

Monochromatic waves satisfy the condition of specified frequency and
constant amplituderhe real source does not give strictly monochromatic light (5.1)
since radiations of separate atoms are not in harmony with each other, because the

24



phases of their waves are shifted on random values. Therefore, coherence of waves
in time and length is necessary for a steady picture of interference.

The coherenceés that the difference of phases of two oscillaticesnains
invariable inone point of spaceit is called temporary oherence The period of
time during which the initial phase will take the value different from the primary
value on p is called time of coherence

The coherence is callespatial when the difference afscillation phases in
differert points of a wave surface is constamhe distance is called coherence
length if the reached values of phase difference is equal to P .

Oscillations created by a wave are not coherent outside of coherence time and
coherence length.

Therefore, the necessary condition of wave interference is the equality of
frequencies and constant difference of phases (coherence of waves) in time. It is
possible to create coherent light oscillations by means of usual light sources only by
one way — by "splitting” of the same light wave on two ones and then to combine
them.

The superposition of light waves conforms to the superposmon pr|n0|ple in

each point of space, therefore resulting intensity is equal to E= E1+E It is

possible to apply the method of vector diagrams if vectors El and E2 fluctuate in

one direction (appendix 12). Using expressions (2.5) and (5.4) we can find the
intensity of the resulting wave:

=1+ 1,42 codf,- /). (55)

Intensity 18l1,+1, in space points where co$/,-/,)80, and intensity
| al, +1, where cod/ , - j,)&0.

The difference of oscillations phases in the point of supervision of an
interferential picture is:

Dj =/.2'/1=V’%?2 Sg_Q(Sznz' Slnl)zip(l-z' L1)=%D,

O /0

where S, S, - the ways passed by two coherent waves from the point of their
division to the point of supervision of an interferential picture, v, and v, - phase
speeds of these waves in media with refraction index n, and n,, /, - wavelength
in vacuum.

The product of geometrical length S of light wave path by the refraction
index of a medium is called optical pathlength L, and D=L, - L,- optical path
difference

Difference of phases D/ and optical path length D are connected by the ratio:

/

D_ng (5.6)
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Using expression (5.6) it is possible to receive conditions of maximum and

minimum for the resulting oscillation intensity:

|l =1, +1, at D/ =2mp, where m=0,1,2,...and D:Zm%:k/, loin =[11 - 1,| at

max

D/ =(2m+1)p, where m=0,1, 2,...and D=(2m+1)/2.

5.3 Dispersion of light

Dispersion of light is called depdence of refraction index oinequency
Dispersion of light is a result of electromagnetic waves interaction with optical
electrons as a part of a substance. Optical electrons are the shared electrons weakly
connected with atoms and molecules. That is why Maxwel | ' s
theory could not explain this phenomenon. According to Lorentz's classical
electronic theory dispersion is the result of interaction of electromagnetic waves
with a substance. Optical electrons (harmonious oscillators) make compelled
fluctuations radiating their own electromagnetic waves forming in total a secondary
wave.

The electron is affected by three forces: quasi-elastic, returning force
F=- mW(er, caused by its interaction with a nucleus and other electrons; resistance

force F =- 2mbﬁ, expressing loss of energy due to the radiation and a transition of

a part of electron oscillatory energy into atom translational; compelling force caused
by the action of electric field of the falling electromagnetic wave.

In such conditions the differential equation of compelled oscillations can be
presented in the form:

C
§+2bg+W§rC:- %Emcoswt,

where 1~ - shift of an optical electron;
m and w, - its mass and own frequency of oscillations;

b - coefficient of attenuation of free oscillations of an electron;

€m and w - vector of intensity amplitude and frequency of a variable field.

If a medium does not absorb light (#=0), the amplitude of compelled
oscillations is

C e
rm

j— m

Polarization of a medium at shifting optical electrons is expressed:

n,e’E C

C
P=-nerC: =e,cE,
0 m(M/g_M/z) 0
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where ¢ - electric susceptibility of a substance;

N, - concentration of atoms (medium molecules).
So,

n,e’

2ze= = . g
n-=e=1+c 1+W (5 )

The dependence curve n(w) is presented in figure 5.1 corresponding to
equation (5.7). Value n monotonously increases from the value closeto 1, to +=o
process where w increases from O to w,. Value n changes abruptly from +=o to
-ao when w= w;, and then in the process of further increase from w, to = n
increases monotonously again from - = to 1. Unlimited increase of n at w- w Is
physically senseless. Such result is received because energy losses connected with
the radiation of secondary waves as well as impacts between atoms and other
reasons are not considered. A continuous curve in figure 5.1 is drawn with regard to
losses. Abnormal dispersiortakes place in the field of the frequency close to the
own one, where dn/dwa0 and we have normal dispersion in the others, where

dn/dwa0.

Figure 5.1

6 Lecture -~ 6. Thermal radiation. Corpuscular properties of
electromagnetic radiation

Lecture6 s ¢ o nquaetumt nature of radiation is briefly given in the
lecture.

Lecture objectives:

- to study the phenomena of radiation of a black body, photoeffect and
Compton's effect;

- to study the role of quantum mechanics in modern physics and learn basic
principles of quantum mechanics.
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6.1 Properties and characteristics of thermal radiation

The electromagnetic dhation is called thermal radiation emitted by a
substance and occurring due to changing its internal energy (energy of thermal
motion of atoms and molecules).

Thermal radiation is the only radiation capable to be tirermodynamic
balance with a substanc@&he statistical balance will establish in time if a heated
body is placed in a cavity impermeable for radiation. In this case the body will
absorb energy of radiation in a unit of time as much as it will radiate itself. Thus,
the distribution of energy between the body and radiation will stay invariable for
each wavelength, but radiation density in space between the body and walls will
reach some certain value, corresponding a given temperature. Established radiation
in this cavity being in statistical balance with the heated body is the equilibrium
thermal radiation Thermal radiation has a continuous range of frequencies
(lengths of waves) with maximum intensity at a certain frequency (wavelength).

Let's consider the main characteristics of thermal radiation emitted by any
body.

Power luminosityR. is energy equal to a full energy stream A emitted
inside out by surface unit S of a radiating body in all directions (within a space

angle 2p):
_da
RT —E. (6.1)

Power luminosity is connected with a power luminosity spectral density of a
body r,, (emissive ability):

R = ff,-dw. (6.2)

Let's consider a platform dSof a body surface on which the radiation stream
dn ;. falls. A part of this stream daj, is absorbed by the body, and da j, is

reflected. The shares of absorbed and reflected energy are characterized by
dimensionless values: absorptive abilityg,, and reflective abilityb,, of a body

_OA iy
SW,T = d/\— . (63)

wy

It is obvious that
a,r +9,, =1. (6.4)

The body is called absolutely black if it completely absorbs the radiation of
all frequencies falling on if,, =1, b,, =0. A good model of absolutely black body

is the small hole in an opaque closed cavity. There is an interrelation between
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reflective and absorptive abilities of opaque bodies established by G. Kirchhoff in

1859 called Kirchhoff's law the relation of power luminosity spectral density of a
body to its absorptive abili does not depend on a body material and is the function
of temperature and frequencié$w,T) for all bodies.
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Function f(w,T) is called Kirchhoff's function. The formula (6.5) shows that

emissive ability of any body can't exceed emissive ability of a black body at the
same temperature values.

6.2 Laws of thermal radiation of a black body and Reyleigh-Jeans’
formula

The experimental investigation of thermal radiation of an absolutely black
body established the dependence f(w;T) at various temperatures (figure 6.1). As see
from figure power luminosity R. of an absolutely black body is equal to the area
under a curve f(w,T) and it increases with temperature. The maximum emissive
ability is displaced towards big frequencies (shorter waves) while temperature
INCreases: Wy <y, <Wns, Itis established experimentally that:

R, =sT*, (6.6)

w, =bT, (6.7)
where s — Stephan-Boltzmann constant;
b —Wien constant.
Ratio (6.6) is called StephandéBoltzmanm's lawand a ratio (6.7) — Wi e n 0 s
displacement . These two laws are important in the practical relation and played
the essential role in the development of thermal equilibrium radiation theory.

tf(@T) 1
/

T1=Te=Ty

Figure 6.1
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An attempt to explain theoretically regularities of thermal radiation was made
by Rayleigh and Jeans using the classical statistics theorem of equal distribution of
energy according to freedom degrees. In this connection equilibrium thermal
radiation was considered in a closed cavity. For Kirchhoff's function they received:

f(W,T):%kT. (6.8)

Comparing function graph (6.8) with the experiment we can see that
coincidence is observed only in the field of small frequencies. Fundamental
difference is observed in the field of big frequencies: at w- 0, f(wT)- = (a
dotted curve in figure 6.1). Power luminosity R, of an absolutely black body in
Rayleigh-Jeans' theory is also infinite that is physically senseless.

The set of all facts showed that the classical physics incorrectly describes
thermal radiation in the field of high frequencies. Developed situation in the theory
of radiation, known in the history of physics as "ulialet catastrophe”, led to the
necessity of fundamental physics revision.

6.3 Plank's hypothesis and formula

The correct expression for Kirchhoff's function and the theoretical basis for
spectral regularities of black radiation were given first by the German physicist
M. Planck. He suggested that energy of a harmonious oscillator, fluctuating with a
certain frequency ¥, can accepts only certain discrete values equal to the whole
number of elementary portions —energy quantum:

W =n>w, (6.9)

where >=h/2p —Plank's universal constant, n=1,23.. - a whole
number.

On the basis of this assumption Planck received a formula for emissive
ability of an absolutely black body:

w’ 1
4p%c? exp>w/kT)- 1’

f(wT)= (6.10)

The Plank's formula is completely coordinated with experimental data in all
i nterval of frequencies from O to o,
radiation were explained on its basis; Stephan-Bolzsman and Wien's constants are
calculated too. This formula transforms into Rayleigh-Jean's formula in the field of
small frequencies.
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All these facts say that Planck's hypothesis of corpuscular character of
electromagnetic radiation is rightt was Planck’s idea that became the first impulse
for development of quantum physics.

6.4 Photons. Compton’s effect

Developing M. Planck’s idea, A. Einstein assumed that light is not only
emitted and absorbed, but it also spreads in quaniwndiscretion is the main
property of light. It consists of separate particles — photonsPhoton energy W (light
guantum), according to Einstein's hypothesis, equals:

W =>w, (6.11)
where w — cyclic frequency of a light wave. i
The photon always moves with the speed ¢ = 2 3n/A& Phdton impulse is:
to= >%/:>k, (6.12)

where k=w/c=2p// —module of a wave vector k directed along the vector
of light wave distribution speed . In a vector form this formula is expressed:

&=k (6.13)
The relation between energy and photon impulse is:
W =cp. (6.14)
The relation between the mass and energy shows that a photon has a mass:

W

CZ

m=2 =" (6.15)
C

but unlike other particles the photon hasn't a rest mass m, =0.

So, the photon is a quantum of electromagnetic radiation. Like any patrticle it
has energy, an impulse and mass. These corpuscular chasticeeof a photon are
connected with wave characteristics of a wave, frequency and a wave vector.
Corpuscular properties of electromagnetic radiation were confirmed in a number of
physical experiments.

In 1922, A. Compton showed experimentally that at dispersion of X-rays by
free electrons their frequency (wavelength) changes according to the law of
collision of two particles — a photon and an electron. The schematic diagram of
Compton's experience is given in figure 6.2.
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Figure 6.2

Characteristic property of Compton's effect is changing of wavelength

D/ =/i-/ that depends neither on the falling radiation wavelength, nor on

substance, where a dispersion occurs, but it is defined only by the dispersion angle
q:

D/ =/ig)- / =/.(- coxy), (6.16)

where /. — Compton's wavelength of an electron, it is equal to 2,430 “Is,
(explanation of Compton's effect is presented in appendix 15).

7Lecture ~ 7. Wasubstameg operties of

Lecture content: some elements of quantum mechanics are briefly stated
in the lecture.
Lecture objective: to study wave properties of substance.

In classical physics there was an idea of basic distinction of the nature of
particles and wave The particle is discrete, concentrated in a very small volume,
as to the wave, it always occupies final part of space (maybe very big). Waves
partially take place in the second medium at meeting with a barrier. They partially
reflect themselves and can interfere between one another. A particle always proves
to be a whole unit, incapable to interfere. However, in the 20s of the XX™ century
the notions of waves and particles were united in the conformity with experimental
facts in physics of microcosm. The fundamental law named corpuscular — wave
dualism of a substance was discovered.

7.1 De Broglie's hypothesis and formula

The dualism of waves and particles was formulated for the first time in 1924
by Louis de Broglie. De-Broglie's idea meant that the dualism is not a feature of
only optical phenomena, but it has a universal value. He supposed that substance
particles together with corpuscular properties have wave properties as well. De
Broglie transferred the rules of transition from one physical picture to another both

32



true for light (electromagnetic radiation) and particles. DeBr ogl i eds hypo
hypothesis of universalism of corpusculawvave dualism according to which not
only photons, but also electrons and other micro particles of matige both
corpuscular and wave properties.

Let's write down the energy and impulse of a photon and a material particle,
usingDe-Br ogl i e’ s hypot hesi s.

Table 7.1
Photon W =hn=>w
h
p=—
C
5=k
Material particle W =mc¢’
C C
p=mu
Particle energy and particle impulse W =>w=hn
through wave characteristics o= h_hn
c /. c
p=>k

Therefore, if a particle has corpuscular characteristics - energy W and
impulse p, the corresponding wave characteristics of the particle, frequency w and
wavelength /, are connected with corpuscular ratios:

w=_, -2 (7.1)

The waves associated with freely moving particles are called waves of De
Broglie. Soto a moving electron (or another particle with not really high energy ( v
<< ¢) a wave process corresponds. The wavelength of this process is:

j=" (7.2)

muy
where m and v —mass and speed of a particle.
7.2 Experimental confirmation of de Broglie's hypothesis

American physicists K. Devison and L. Dzhermer established that selective
reflection of electron bunches from a metal surface on certain angles is observed
while reflecting.

The parallel mono energetic bunch from an electron tube T was directed to
target M and the reflected electrons were caught by collector K connected to a
galvanometer.
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The accelerating voltage changed continuously
at the fixed angle of the bunch falling from the crystal
surface and thus indications of the galvanometer were
registered. The intensity was maximum at certain
angle d.

The experience with selective reflection of
electrons from a crystal surface represents analogue
diffraction reflection of X-rays from a crystal by
Bragg's method.

Calculations by Bragg's formula were
compl etely coor di n abyedd
Broglie's formula.

W F!gqre 7'1.

al cul

A large number of experiments (diffraction picture of electrons, atoms,
molecules) passing through thin metal plates confirmed de Broglie's hypothesis as

well.

7.3 Some properties of de Broglie's waves

Accordingtode-Br ogl i e’ s hypothesis the

compared with a monochromatic wave length

In the case of dispersion, we must differ two speeds of waves - phase and
group speed which reflect wave properties of De-Broglie's waves. Calculations
show that electronic waves have big dispersion, group speed is equal to the speed of

particle g.

Thus, it is possible to present the link between corpuscular and wave

properties of free particles having the mass and speed as:

Table 7.2

Corpuscular properties

Wave properties

Particle speed g
Particle impulse p=mg
Energy of a free particle

De-Br ogl i e’ s/:W—'évDel eng
mu p

De-Brogl i e’ s Wna=VVr¥e fre

De-Brogli e’ s waw=sys gr

Phase speed u :%

ph
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74Hei senber goeprinciplecert ai nty

In classical mechanics, the particle condition at the moment is defined by the
value of coordinates and an impulse. They are so called dynamic variables. That
microparticles have wave properties leads inevitably to the fact that concepts
characterizing a particle in classic mechanics must be limited.

However, we receive some information on microparticles, observing their
interaction with devices. Therefore the results of measurements are expressed in the
terms accepted for macrobodies, i.e. using values of dynamic variables.

The originality of properties of microparticles is reflected in the fact that
coordinates and impulse of a particle cannot have certain values at the same time.
These restrictions are not defined by perfection of measuring equipment, and
express fundamental properties of matter. So, for example, an electron (as well as
any other microparticle) cannot have exact values of coordinate x and impulse
components p, at the same time. Uncertainties D= and Dtg, satisfy the expression:

DR, 2 >, (7.3)

The expression similar to (7.3), takes place for y and tg, z andp,, and
also for energy and time

DW@ 2 >, (7.4)

Expressions (7.3) and (7.4) are called uncertainty relationsFor the first time
they were established by W. Heisenberg in 1927.

According to (7.4) it is necessary to have time on less than Dt° >/DW to
measure energy with errorDW. "Degradation™ of power levels of hydrogen-like
atoms can be an example (except the main state). It is explained by the fact that
electron life time in all excited conditions is approximately 10°®s. Degradation of
levels leads to broadening of spectral lines (natural broadening)If a system is not
stable energy always has non removable statistic error no less than:

DW © 7 , (7.5)

where ti life time of a system

The statement that the product of uncertaintiesvalues of two interfaced
variables cannot be in the order of value less than Planck's @onst Kk | I S
Heisenberg'sincertainties principle.

7.5 Statistical interpretation of De Broglie waves. Wave function

Hei senberg’s uncer t adesaription@fsmicloparackks t o
movement that allows to combine organically their corpuscular properties with
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wave ones. According to statistical interpretation, intens t y of de Br ogl
in any place of space is proportional to the probability to find a particle in this
place.

The major elements in the fundamental physical theory are the concept of a
stateand the equation describing dynamics (change) ofstage

In classical mechanics the state of a particle at the present time moment is set
by coordinates X, y, zand impulse p,, p,, p,, and the main equ:

second law. In a microcosm physics the state of microparticles can be described
only by a function having wave properties.

In quantum mechanidbhe state of a microparticle is set by wave function
Y (7 & zt), which isthe function of spatial coordinates and time. T¢hang of this
state in time is described by Schrodi:
the main equation of the quantum theory

The wave function is a field in mathematical sense (as it is complex, the
waves described by function Y, are not observable). Interpretation of physical
sense of wave function was given for the first time by M. Bourne. It is as follows:

Squaremodule Y (7, &z zt)* of complex functiory is the density of probability
to find a particle in volumedv near thepoint with coordinates xy, z. The
probability of finding a microparticle point at time in this volume is given by
expression:

dP(x,y,zt)’dV. (7.6)

It is already observable value.

Function Y must satisfy some natural conditions. It has to be continuous and
single-valued everywhere. It is necessary to normalize this function so that the
probability of a reliable event should be equal 1:

AY (x.y, zt) dv =1. (7.7)

76Schr°dinger's equation

Change of a state in time, i.e. in the nonrelativistic case dynamics of a
microparticle is described by the non-stationary equationof Sc hr 6 di nger .
main equation of the quantum theory.

2
i>%:- 2>—mD Y+U(x,y,zt)Y , (7.8)

where i =+/- 1 - imaginary unit;
m - mass of a particle;
D - Laplace's operator;
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U - potential energy of a microparticle (in the case, when U does not depend
on t).
Schr 6di nger ' ghe relgin ronrelatovistic qudntany reechanics
the, as the equation of Newton's second law does in classical mechanics.
If a microparticle is in a stationary force field and its potential energy does
not depend obviously ontime i n t his case the statio
takes place:

DY+2>—r2n(W-U)Y:O. (7.9)

Parameter W in this equation has meaning to total energy of a particle, and
the solution of this equation Y (x,y, z) is function of spatial coordinates.

FunctionsY (x,y, z) satisfying to the equation (7.9) at thifx, y,z) are called
own functions. Values of energy are called own values. They are solutions of the
Schr°dinger's equation.

8 Lecture ~ 8 . Sol uti
Principle of Bohr

0 n 0 duati®s Quarttuini nanthes.
0s conformity
Lecture content: application of the equation o f Schrdodinger
quantum mechanical tasks, and the principle of Bo hr ' s c arenlfriedly mi t
described in the lecture.
Lecture objectives:
— learn to apply S ¢ h r ¢ d squatgpre for various quantum mechanical tasks
solution;
— study the principleofBohr > s conf or mity

8lExamples of Schr°di ndrncipleogBRolars i o n
conformity

8.1.1 A microparticle is in one-dimensional potential pit of infinite depth.

Let's suppose that a particle with mass m can move only along Ox axis.
This movement is limited by impermeable walls for the particle, which coordinates
are x=0 and x=L (this task is similar to a task about free electrons in metal in the
classical electronic theory).

Potential energy of the particle in such a field can be seen in (Figure 8.1). As
the psi-function of the particle depends only on the coordinate x, the stationary
S ¢ h r érd squatgpn (7.9) in this task is expressed:

d’Y  2m
2 +?(W- u)y =o. (8.1)

37



Figure 8.1

The particle can not get out of the limits of the pit therefore | e tohsiler
Y(x)=0 in areas xao0 and x&L . It has to be equal to zero on the pit borders too that

follows from a condition of a continuity of psi-function:
Y(0)=Y(L)=0. (8.2)

Equalities (8.2) are the boundary conditions added to equation (8.1). Within a
pit (in this area U =0) equation (8.1) is expressed:

d2y 2m.., _
2 +?WY =0. (8.3)

The solution of this equation consists in finding possible values of total
energy of particle w (a power range) and wave functions energy corresponding to
these values of energy Y (7).

Equation (8.3) is known from the theory of oscillations. It answers condition
(8.2) only at certain values of energy of a particle

22

_p*

W, o2 n?, (8.4)

where n=12,3...- whole numbers.

This result shows that the power range of a microparticle in a potential pit is
discrete, i.eenergy of a particle is quantized. Quartizvalues of energw, are

called energy levels, anal is themain quantum number.
Own functions of a particle corresponding (8.4) are:

Yn(x):Asir%‘e“Lﬁxg, 0 XCL. (8.5)
(; -

Coefficient A is found from a normalization condition (7.7).
Finally we have
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Y (x)= E sin%. (8.6)

In figure (8.2) the scheme is drawn for a particle power levels in a potential
pit (a). Function graphs Y (x) (b) and graphs of probability density dP/dx (c) of
particle detection are presented in the vicinity of points with coordinates x.

Figure 8.2 illustrates fundamental difference in behavior of quantum and
classical particles. So, a classical particle can possesses any energy in a pit,
including W_.. =0 corresponding a particle placed on the bottom of a pit. The
energy range of a quantum particle is discrete, and its minimum energy corresponds
to value n=1 about is not equal to zero. A quantum particle cannot be on the
bottom of this pit. A classical particle can be found with equal probability in any
point of a pit. A quantum particle being in the lowest power state (n=1) for
example, can be found with the greatest probability in the center of a pit. But the
probability density of finding a quantum particle at the edges of a pit is equal to
zero for any state. Using S ¢ h r 0 'd equatepreim relation to various cases is given
in appendix 16: tunnel photoeffect, harmonious oscillator.
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Figure 8.2

8.1.2 Principleof Bohr s conf or mi ty

The results of quantum mechanied large quantum numbersnust
correspond to classical resaltlt is Bohr's principle.

Equation (8.4) shows that energy difference of two nearby levels is:

w, =2 (on41). (8.7)
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Expression (8.7) shows that the increase of mass m of a particle or value of
area of its localization L reduces an interval between nearby levels. The interval
value DW increases linearly with the increase of quantum number n.,

Let's find the relation DW/W, using formulae (8.4) and (8.7):

DW _ 2n+1 DW , 2
AT whenn>>1, —— o 2,
w n W n

(8.8)

The received result shows that with growth of number n (8.8) the distance
between the nearby levels of energy Dw becomes small in comparison with the
energy of a particle. In this case it is possible to neglect discreteness of a power
range, i.e. the quantum description becomes close to the classical ones. Amplitude
values of probability density equal to 2/L and are identical for all n. The number
of function knots (zero) Y, (x) increases with growth of n. At big n3 £ maxima
and minima of a curve follow one another so closely that the curves and we have a
classical result.

8.2 Orbital and magnetic quantum numbers

The electron energy in a hydrogen atom depends only on the main quantum
numbern. But Schroédinger ' s equation
condition of an electron) contain three integer parameters: n,?,m. All quantum
numbers are defined from function properties y .

Orbital (or azimuthal) guantum number ? defines the impulse moment L of
an electron (classical analogue is physical quantity L= n{?’bj , playing an important
role in studying particle movement in the field of central forces).

L=/2/(2+1) &. (8.9)
At a given quantum number n the number ? can accept values

2=012...(n- 1).
Impulse moment L has specific properties in quantum mechanics: impulse
moment value L and only one of its projections can be given at once (for

sho

example,L,), two other projections are not defined (a ratio of Heisenberg’ s

uncertainties).
Magnetic quantum numben defines a projection L, of an impulse orbital

moment in the direction marked out in space (for example, | e tmarksout axis z
creating a magnetic field along it)

L, =m>. (8.10)

z

At given value ? it can have values m=0,°1° 2,...° ?.
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Integer (in units >) projections of an impulse moment can be interpreted as
guantizaton of impulse moment orientatiorelation tothe direction marked out in
space (Figure 8.3).

Table 8.1
z W, | Yo | n| 2 | m | Amultiplicity
of
degeneration
W, | Yo |1/ 0] 0 1
YZOO O 0
Y211 1 +1
=1, m=0,+1 W, [ vy o 211 4
: v 1
Figure 8.3 21-1
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by three quantum numbers n,?, M. Each one value W, (except W,) has some own

functions differing on values of the orbital ? and magnetic m quantum numbers. It
means that a hydrogen atom can have the same energy value being in several
various states. The states of first two power levels are given in table 8.1.

States with identical energy are called degenerateand the number of various
states with a value of energy is called a multiplicity of degeneratiorof an
appropriate power level. It is easy to calculate a degeneration multyplicity,

proceeding from possible values for ? and m:
n-1
a (22+1)=n. (8.11)

?=0
8.3 Electron spin

Spin is significantly quantuwalue it doesn't have a classical analogue. Spin
is an internal property of a quanm particle characterizing it equally with a mass
or a charge.An electron spin is a quantum and relativistic property at the same
time.

The module of its own moment of an electron impulse is determined by spin
quantum numbes, equal to 1/2.

L =>/S(S+1) =>/[1/2)d3/2) = (1/ 2)>/3. (8.12)

An important difference of the spin from the orbital moment is conservation
of a spin abslute valueit can change only its projection. L., ina given direction:

Ly, =mg>, mg=°s=°1/2, (8.13)
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9 Lecture ™~ 9. Quantum statistics and their application

Lecture content: elements of modern physics of atoms and molecules are
briefly described in the lecture.
Lecture objective: to study quantum statistics, Pauli's principle.

9.1 Indiscernibility of identical quantum particles. Pauli's principle

According to the quantum theory all micro particles are divided into two
classes corresponding to two quantum statistics:

- particles with half-integer spinare called fermionsand they correspond to
Fermi-Dirac's statistics;

- particles with the whole spin are called bosons acwhformed to Bose
Einstein'sstatistics.

Both quantum statistics under certain conditions transfer into Boltzmann's
classical statistics being an approximate limit case.

The admissible microstates of particles are considered equiprobablein all
three statistics. The difference of these statistics is determined by ways of definition
of microstates and statistical scales. The movement of a separate particle is possible
to track in a system, because even identical particles are fundamentally different
distinguishable in classical statistics. There is a principle of identity
(indiscernibility) of identical particles in the quantum theory of particles systems:
all identical particles forming this quammmechanical system are identical
(completely indiscernible)The physical nature of difference of two quantum
statistics follows from this principle: there are two types of wave y - functions
describing the state of identical particles — symmetriand antisymmetric.

The type of symmetry of wave function is a property of particles themselves
and depends neither on interaction between them, nor on existence of external
fields. Their spin is a criterion that differs types of particles.

Fermions havean important feature. Particles of this typmrrespondto
Paulie's principle there is not more than one fermion in the same state in any
guantum-mechanical system of identical fermions.

While there is any number of particles in each quantum state according to
Bose-Einstein" s st.ati sti cs

Differences of the statistics explain figure 9.1 where the placement of two
identical particles is shown in two quantum states (squars).

It is seen that there are four microstates in Boltzmann's statistics, but the
probability of each of them is equal to 1/4. In both quantum statistics the first two
states are indiscernible in the same state. Moreover the last two states are
impossible (Paulie's principle) in Fermi-Dirac's statistics. There is only one
microstate which probability of implementation is equal to 1.
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9.2 Quantum distributions

The main objective of quantum statistics is finding functions of particles
distribution corresponding to these or those parameters (for example, on energy),
and also determining average values of these parameters characterizing the most
probable condition of the whole system of particles. Let's consider quantum
distributions of particles on energy W. These distributions represent functions f (W)
defining average numbers of particles in the samestate with energyv,

for fermions

f(W): e(W_”a/kT +1l (91)
for bosons
1
W)= e 9.2)

where m is called a chemical potentia(sometypical energy which value is
possible to find from a definite condition. The total number of particles is equal to
full number N of macro system of particles in all states).

Features of these distributions are:

— value of function f(w) for fermions cannot be more than one unit, and for
bosons it can be any;

— value m for bosons cannot be positive in (9.2);

— the formula turns into Boltzmann's distribution if f(W)al because we can
neglect one unit in  denominators of both distributions and the distribution is
expressed:

m w w

FW)=e @ W =Ae ¥, (9.3)
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where A T normalizing coef€ient. It is called parameter of extindh this
case we can tell about coincidence of formulas, but not about change of behavior of
particles (fermions remain fermions, and bosons will be bosons).

9.3 Fermi-Dirac's distribution for electrons in metal

In the classical electronic theory many properties of metals are explained by
means of a free electrons model. In the quantum theory free electrons can be
considered as an ideal gas containing fermions in a rectangular potential pit. The
energy spectrum of electrons is discrete, but energy levels are located so densely
that it can be considered quasicontinuous

9.3.1 Let's consider behavior of electronic gas at temperature v =0s . In this
case f(W)=1,ifwem and f(w)=o0, if wam.

n M|
et e : :
~] e ——a - ‘o
R
l ™~ .
W W U
Figure 9.2 Figure 9.3

The function graph f(W) is shown by a continuous line. We can see that all
states with energy Wam are filled, but the states with wam are unoccupied. In this

case value m is called energyor Fermio kevelWw. = . This is a maximum value of
free electrons energy in metal at T=0K

2

> 2/3
W_(0)=—I(3p°n,) ", 9.4
-(0)=2—(30"n.) (9.4)
where m is mass of an electron;
N, is the concentration of electrons in metal.

The evaluation of value W, gives value = 5 eV. Average value of energy of
free electrons according to the corresponding calculation is equal to:

W) @ng . (9.5)
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Such average energy could correspond to temperature T~5Q0°K for a
classical gas. This temperature exceeds in many times the melting temperature of
any metal. The speed of electrons being at the level of Fermi is about 10°m/s.

Such a state of an electronic gas (a continuous curve on graphic f(w) (Figure
9.2) is called conpletely degeneratedDistribution of particles on energy differs a
lot from classical theory, it is only a quantum effect.

9.3.2 At T® Fermi-Dirac's distribution is blurred away a little bit in the
vicinity of Fermi's level (a dotted curve on function graph f(w)) owing to the
interaction of free electrons with thermal movement of atoms. The area of blurring
has an energy order of the thermal movement KT. Therefore, only those electrons
which are at the highest levels close to Fermi's level (owing to the thermal
movement) can change the energy. This fact explains the difficulties of the classical
theory in the explanation of lack of an electronic component of thermal capacity of
metals.

The electronic gas is in a potential pit, therefore distribution of electrons can
be presented as follows (Figure 9.3), where U- depth of a potential pit. The
energetic levels occupied with free electrons are tinted. Energy W, is Fermi's level,
the amount of work of an electron exit from a metal is designated by arrows.

As seen in figure 9.3 the work ofelectrone x i (tthe ¢mallest energy which
should begivento an electron for its removal froemmetal)should be countedot
from the bottom of a potential pit as it is done in the classical theory, but ftwen
electrontop of the power levels occupied by electrons.

Fermi's energy depends on temperature a little bit, therefore the work of
electron exit will also depend on temperature. Kinetic energy of electrons is usually
counted from the bottom of a potential pit.

9.3.3 The quantum theory of conductivity of melaksis to the Ohm's law, it
is similar to formula which was received in the classical electronic theory

v v
] =

E.
Formula for conductivity is expressed:

_né/(
musy()

Electrons speed v, (corresponding to its value at the top of an occupied
energy level) is in the denominator instead of average thermal speed (v). This speed
does notpractically depend onmetal temperature Value / — average distance,
which can be passed by a wave without dispersion on the knots of a crystal lattice. It
can make hundreds of periods of a lattice. The dispersion of electronic waves grows
with temperature increasing on thermal oscillations of a lattice and therefore /(m)
decreases. It is the average length of free run of an electron having Fermi's energy.

S

(9.6)

g9
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At the usual room temperature, the value / is inversely proportional to the first
degree of temperature. It results in experimental data: g~1/T. Therefore, it was

succeeded in eliminating one more difficulty in the classical theory, according to
which g~(W/T)"2.

The density of electronic gas is so great (n=10 - 10°m®) in metals, that the
gas is in extinct state even at usual temperatures.

10 Lecture = 10. Zonal theory of solid bodies

Lecture content: elements of physics of a solid body are briefly described in
this lecture.

Lecture objectives:

- to study structure of semiconductors, distribution of electrons on levels;

- to consider types of energy levels and the principle of action of p-n
transition.

10.1 Zonal structure of an energy spectrum of electrons in crystals

All variety of solid bodies properties is caused by existence of two
subsystems: electrons and atomic nuclei forming a solid body.

The quantum model of free electrons in metal (zero approach) explains well
metal conductivity and many other properties of a metal, but it does not answer the
question «why do not all solids have similar properties?»

The strict approach considers that electrons move in a periodic field of a
crystal lattice (in the field with periodically changing potential). This leads to the
fact that the spectrum of possible values @éctron energy is split into a series of
permitted and forbidden zones.

The origin of energy zones is connected with splitting discrete atomic levels
owing to interaction of atoms in a crystal lattice: the conformity of electrons with
Pauli's principle leads to impossibility of identical power states of interacting atoms.

Each permitted zone consists of N close located levels the number of which
is equal to the amount of atoms in a crystal. Energy zones of permitted energy are
divided by forbidden zones — intervals where energy levels are absent.

According to Pauli's principle, electrons are located depending on different
states, consistently filling the permitted power zones, starting with the lowest zone.
The filled energy levels are shown by toned drawing.

Thus, the energy spectrum of electrons has zonal structure in crystals. The
width of zones does not depend on the crystal dimensions. A crystal contains the
more atoms the closer levels are located in a zone. The permitted zones have the
width about several electron-volt. Therefore, if the crystal contains 10*° atoms, the
distance between levels in a zone is approximately 10*ev. There may be two
electrons having opposite directed spins at each energy level.
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10.2 Power zones in metals, dielectrics and semiconductors

Depending on particular atom properties the equilibrium distance between
atoms supposes the existen c e o f f o r Wiodndaghy zongs dhat ean i
overlapped (figure 10.2). The forbidden zone is located between permitted zones
arising from nearby energy atom levels. It depends of the concrete properties of
atoms. Thus, there are two opportunities for valence electrons of atoms: they fill
either partially, or up to the end one of the permitted zones. This zone is called
valencezone Empty zones are located on the top of it.

The crystal conductivity depends on the structure of a zonal energy spectrum
of electrons in a crystal and on filling this spectrum with electrons at temperature
v=0_This defines whether a crystal belongs to metals, dielectrics or

semiconductors.

Electrons in the filled zones fully or partially have different properties. If the
zone is partially filled with electrons, even weak electric field will transfer electrons
to unoccupied states within the same zone. Average speed of the movement of
electrons will become greater than zero and an electric current will appear in a
crystal. Therefore any partially filled energy zone is a zone of conductivity

W AW Wpmee—— AW

Metals Dielectrics Semiconductors

Figure 10.2
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If the valence zone is completely filled at s =0 (is not a conductivity zone),
the crystal will be an insulator or a semiconductor. Heating of such a crystal leads
to that a part of electrons of a valence zone passes into the nearby empty zone
because of thermal fluctuations . As a result bothzones become conductive zonest
a width of forbidden zone Dw is about several electron-volt, a number of
conductive electrons is insignificant. Therefore, crystals with such width of the
forbidden zone are dielectrics If the crystal has width of forbidden zone Dw ¢1leV,

at T&® it is a semiconductor.

10.3 Conductivity of semiconductors

A semiconductor qualitatively differs from a metal in that a semiconductor
has two sorts of current carriers:irst, there are electronspassed from a valent zone
into a free zone of the semiconductor, and second, these "holes" in a valent zone are
free states at its top levels. Movement of "holes" is not a motion of a real particle,
but it is the fact that its movement reflects the character of the movement of all set
of electrons in top levels of a valence zone.

Moreover, there are two types of conductivity in semiconductors: own
conductivity(it is typical for pure semiconductors) and impureone (it appears when
in a pure semiconductor some atoms are replaced by impure atoms with a valence
bigger or smaller by on a unit).

Distribution of electrons in free and valence zones is described by Fermi-
Dirac's function. Calculation shows that Fermi's level is located in the middle of the
forbidden zone, and levels of a free zone (with the electrons which passed there) are
on the "tail" of distribution f(w). It means that W- W, © DW/2. Regarding the last

ratio and that Dwa kr, the probability of filling levels in a free zone (i.e. formula
9.1) can be written:

fW)o e BW/2KT (10.1)

The number of the electrons which passed into a free zone and number of the
formed holes are proportional to f(w). These electrons and holes are the current
carriers; the free zone is a zone of electrons conductivity, and valence zone is a zone
of holes conductivity.

As conductivity s is proportional to concentration of carriers, own
conductivity of the semiconductor is:

_ow
S =5,e % (10.2)

where s, ° const.

As seen from (10.2) own conductivity of a semiconductor grows quickly with
the increase of temperature. We know that own conductivity of metal decreases
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with the increase of temperature according classical electrodynamics. Thus
temperature dependences of a semiconductor and a metal are opposite to each other.

Own conductivity of a semiconductor is very small because the width of
forbidden zone DW considerably exceeds thermal energy kT.

Conductivity of a semiconductor can be considerably increased (in hundreds
of times and more) by introduction of a small amount of additives (about 10“%).
Additional levels arise in the forbidden zone depending on impurity valence. They
are located close the bottom of a free zone (donor) or to the ceiling of a valence
zone (acceptor). It helps to increase significantly the conductivity of the
semiconductor.

Semiconductors with impurity conductivity are widely used in modern
electronics.

11 Lecture ™ 11. Nuclear physics

Lectured s ¢ odalemeatsiof physics of an atomic nucleus and elementary
particles are briefly described in this lecture.
Lecture objective: to study structure of matter.

The structure of substance is investigated in nuclear physics where
characteristic dimensions of matter are not only negligible in comparison with
macroscopic distances, but they are very small in comparison with atom. The scale
of various distances of nuclear physics is given in logarithmic scale in figure 11.1.

Time periods up to 10°s are directly measured in modern nuclear physics.
However, much smaller intervalgp to 10% - 10%s, are indirectly measured by
means of wuncertatinmg” rel ations “ener gy

Nuclear physics

----------------*

| | | | | | | | |
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Atomic quantum nuclei weak
physics electrodynamics physics interactions
Figure 11.1

11.1 Structure and characteristics of an atomic nucleus

The nucleusepresents a system of particles - nucleons which interact very
strongly. They are hold together by nuclear attractive forces and move with
nonrelativistic speeds inside a nucleus. A nucleon is a general name of particles
forming a nucleus — protons and neutronsMain characteristics of these particles
are given in table 11.1.
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Table 11.1 — Characteristics of nucleons

Particle (designation) Proton (p) Neutron (n)
Physical quantity
Mass, kg 1,67264810% 16749540 %
Mass, MeV 93828 93957
Electric charge +e 0
Magnetic moment +2,79m, - 19137,
Spin 1/2 1/2
m, =4§>/2m c=050500*J /s - the nuclear magneton — unit of magnetic
moments of nucleons

A neutron in a free state is unstable and spontaneously breaks up; it turns into
a proton emitting an electron and an antineutrino.

Proton in a free state is a stable particle. Inside a nucleus a proton can turn
into a neutron emitting out a positron and a neutrino.

The proximity of many properties of a proton and neutron allows to consider
them as two conditions of one particliea nucleon.

The main characteristics of stable nucleus are the charge,mass, binding
energy, radiusenergy spectrum of states.

Radioactive(unstable) nuclei are characterized by a number of additional
parameters: time of life (halflife period), type ofradioactive transbrmations,
energy spectrum @&mitting particlesetc.

Charging numberz coincides with the number of protons in a nucleus and
defines the nucleus charge equal to + Ze.

Mass numbera defines total quantity of nucleons in a nucleus, as well as the
number of neutronsN = A- Z.

The considered characteristics of a nucleus are expressed in symbolical
designation /X .

Sizs of nucleiForms and sizes of nuclei are conditional enough because the
behavior of particles forming a nucleus is conformed to quantum laws. It is possible
to speak about average distributiorof density of nuclear substanaad there are
experimental methods to measure it.

In the first approximation a nucleus can be considered as a sphere, which
radius is

r=r A", (11.1)

where r, =(1,2- 1,3)A0*m.
As seen in from (11.1) nucleus mass is proportional to its volume. Therefore,
substance density in all nuclei is approximately identical and approximately equals

ry °107kg/ m’.
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A nucleus spin ( full mechanical momengonsists of impulse moments of
protons and neutrons being parts of nucleus.

11.2 Mass and binding energy of a nucleus

Exact measurements of masses showed that the nucleus mass,, is always
less than a sum ofucleons maswithin a nucleus

m, =Zm, +(A- Z) m, - Dm. (11.2)

Difference Dm between the sum of nucleons mass and mass of a nucleus is
called the mass de&and characterizes the binding energy of nucleons a nucleus.
It is the minimum energy W,, which should be spent to split the nucleus into parts. It

is obviously that w; is one of the main characteristics of nucleusstrength. Knowing

binding energy of a nucleusit is possible to calculate an energy exit for any
processes of disintegrations and mutual transformations of nuclei

W, = Dm&@? = c*{|zm, +(A- Z)m,|- m.}. (11.3)
For practical calculations it is more convenient to use a formula
W, =c¥{[zm, +(A- Z)m, - m]]}, (11.4)

where M, —mass of an atom:;

M —mass of a hydrogen atom.

The relation of binding energy W, to full number of nucleons in a nucleus ¢
is called specific binding energyor binding energy on for one nucleon). The
analysis of dependence of specific binding energy on mass number (figure 11.2) for
stable nuclei gives interesting information about properties of nuclei and about a
character of nuclei forces.

Wi/A
MeV o | _
/4 —

6
|
’|

0 40 80 120 160 200 240 A

Figure 11.2

o1



The graphs in (figure 11.2) shows that: the nuclear attractive forces are
short-range - about the size of a nucleon; nucleons in a nucleus are connected most
strongly with values of mass number from 50 to 60 ( binding energy for these nuclei
Is 8,7 MeV/nucleon), synthesis of light nuclei and division of heavy ones are
energetically favorable ones.

Process of nuclear fission of uranium orlygonium under the influence of
neutrons is the base of nuclear reactor operation as well as a usual atomic bomb.

Process of synthesis of light nuclei can be realized only at very high
temperatures (thermonuclear reaction)t proceeds in a subsoil of the Sun and stars.
Uncontrolled thermonuclear reactions as explosions of hydrogen bombs were
realized in 1952 in USA and in Russia in 1953. Now scientists work hard on
finding controlled thermonuclear synthesis.

11.3. Nuclear forces

Huge binding energy of nucleons in a nucleus indicates that there is very
intensive interaction holding nucleons at very small distances from each other
despite strong Coulomb pushing away. Nuclear interaction between nucleons is
called strong interactionlt can be described by means of a field of nuclear forces.
They have distinctive features.

Shat-acting.Radius of action of nuclear forces is an order ~ 10™ m.

Charging independena# nuclear forces. Strong interaction does not depend
on a charge of nucleons.

Dependencen mutual orientation of nucleorspins For example, a nucleus
of heavy hydrogen (deuteron) is formed of a proton and a neutron only if their spins
are parallel.

Nuclear forces are not centralhey are not directed along the straight line
connecting the centers of the interacting nucleons.

Nuclear forces have a property of saturatideach nucleon in a nucleus
interacts with limited number of other nucleons.

Nuclear forces depehon the speed oélative movement of nucleons.

Exchange character of nucleforces Nucleons virtually exchange particles
which are named pi- mesongp). They are called pions.

There are two charging conditions of a pions with a positive and negative
charge ° j, and one condition is electrically neutral. These particles are unstable and
they don't have a spin. Main properties of pions are given in appendix 17.

11.4 Radioactive processes
11.4.1 a —disintegration.
Radioactive transformation with emission of o— particles is described by the

equation:
AX- 2%Y+ He. (11.5)
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The a — particle is a helium atomic nucleus and is designated ;He. Owing to

emission a — particles the charge of a maternal nucleus X decreases on 2 units and

mass number —on 4 units.
Energy ofa — particlesemittingby radioactive material is strictly particular

(a discrete power range)n most cases radioactive material emits some groups of

a — particles of a various energy. The scheme explaining appearance of a — particles

of various groups is given in figure 11.3. The dotted line shows possible transitions

with emission g— quantum.

b siictevelof Energy of a — particles of various

nucleus X radioactive sources has values from 4 to

9 MeV. Passing through substance a —

B particles lose the energy owing to

g Energized levels of S . [ b | | d
k muclens ionization of substance molecules an

. eventually they stop. Distance, passed by

Basic level of a a — particle in substance to a full stop,

is called the run ofa — particles. For the
_ majority the a — particles the run in air is
Figure 11.3 several centimeters.

11.5 b7 disintegration

There are three types of — disintegration. In one case the nucleus emits an
electron in another — a positron the third case is called electronic capturgj  or
K — capture), when the nucleus absorbs one of electrons of K— cover. Let's
introduce symbolical designation for an electron %e (the charge is equal to 1, mass
number is 0), for a positron —%e. There are schemes of b —according to its three
types respectively:

MX- LAY+ %+ (11.6)
7X- LAY+ Jetn (11.7)
MX+0% LAY +n. (11.8)

An antineutrinoalso emitted (7) with an electron at electronic disintegration;
as to positron disintegration and e-capture — a neutrindp)is emitted.
b —disintegration can be followed by gamma radiation. The mechanism of its

emergence is similar toa — disintegration.
At b — disintegration two particles are emitted(an electron and an

antineutrino) which are not present inside a nucleus. They occur during
disintegration due to transformation of a neutron into a proton:
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on- pt+ e+ . (11.9)

Process of positron disintegratiorfequation 11.7) occurs with emission of a
positron and a neutrino:

ip- on+e+n. (11.10)

The third type of 6 — disintegration, connected with capture an electron by
nucleus from near to it K — covers, leads to that one proton turns into a neutron:

Tptle on+n. (11.11)

Passing through substance &— particles lose their energy and at a certain
distance they are completely absorbed. Maximum run of & — particles in air can
reach 1 — 3 meters. o — particles possessing large energy can penetrate thin layers of
light metals. Lead of some millimeters can completely absorb all »— particles.

11.6 Scale of radiation

Gamma radiation (gi radiation) represents shoiwave electromagnetic

radiation with wavelength not motean 10*° m. This radiation is generated while
nuclei transfer from one excited state into another or in to the main state. In this
case g— quantum is radiated. Energy spectrum of g— radiations is discrete. It has

much bigger penetration than a - and 6 — particles. Passing g— radiations through

substance are followed by three main processes: photcelectric absorptionclassical
and Comptois dispersion, formation of electroand positron couples.
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Appendix 1

Studying a phenomenon of electromagnetic induction it was found that in a
contour in rest a variable magnetic field occurs an induction current. Action of
third-party forces is the reason of emergence of the latter. These are not magnetic
forces since they cannot set the being in rest charges in motion (#'=0). There are
forces of an electric field F=qE. This field is responsible for emergence of EMF of
induction in a motionless contour when a magnetic field changes in time. Maxwell
assumed that a conductor is only an indicator of induced electric field. The field acts
a movement of free electrons in the conductor and detects itself by that, but it exist
and without a conductor possessing an energy stock.

Unlike an electrostatic field an induced electric field is unpotential and vortex
as the work completed in this field when moving a single positive charge over the
closed contour is equal to induction EMF, but it is not zero,

C U
fEvd =€,
o \%
where E, - intensity of the electric field induced by a variable magnetic field.
Appendix 2
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Figure 1.1- The graphs of dependence of current | from time t

There are the graphs I(t): curve 1 shows the decrease of current when a
circuit is disconnected; curve 2 is the increase of current at its short circuit, so,

current 1, :g represents the settling current (at t- o).

The speed of a current change (decreasing or setting) is characterized by

constant ¢ :%, it is called time of relaxation and hase dimension of time.
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Appendix 3
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Figure 1.2 - Circuit of alternating current
Appendix 4

Oscillations are called free oscillationsthey occurin the system given to
itself after being brought out of an equilibrium state.

Oscillations occurring in any system under the influence of external variable
influence are called compelledfluctuations.

Seltoscillationsas compelled are induced by impact of an oscillatory system
of external forces, but time points of implementation of these influences are set by
the system. The system controls external influence itself.

At parametrical oscillations periodic change of any parameter of a system
occurs due to external influence. Oscillations are periodic if values of all physical
quantities characterizing an oscillatory system and changing at its fluctuations
repeat in regular intervals.

Appendix 5

As seen in table 5.1 own cyclic frequency of the oscillator depends on its
parameters. In table 5.1 value § is a speed (linear v or angular w) of mechanical
oscillator and of current 1 in an oscillatory contour; & is an acceleration (linear a
or angular e) of mechanical oscillator; u. is a voltage on the condenser.

Amplitudes of values & are respectively equal w,x_, wa., waq,, and & is wix,, ,
wta, . Their phases differ; a phase of value S differs from a phase of value § on

pl2 (it lags behind), and the phase of value & from a phase S on p (it advances).
In case of mathematical and spring pendulums a returning force is equal to

F =-mw?x. For a physical pendulum there is a value L = # called specified length

of a physical pendulum . It is the length of such a mathematical pendulum which
period is equal to the period of this physical pendulum. So, the period of a physical

pendulum is written as:
T= Zp\/E.
g
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Appendix 5

Table 5.1
Oscillator Pendulums Ideal oscillatory contour
mathematical physical spring ’
=
O % 1 IzL
Characteristic Fymp Ty
equations of | mg
fluctuations mgy
Main equation of | meé#= - mgsina | #t= - mgPsina = - kx IR=(/,-/,)+e
a system R=0/1-/'2=-Hﬂ es__L%
Diff.equation wr 950 PRLLLL S K20 g+ q=0
| I m LC
Sin (3.1) X a X q
Equation of | x=x,codwt+/) a=a,cofwt+j) X=X cogut+/) q=q, codmt+/)

fluctuations

Cycle.frequency | w, =./g/? w, = J(meP)/1 =[g/L w, =~k/m w, =1/+/LC
Wy, T=2pJ?/g T =2pJ1/{mg?) =2p/L/g T =2pJm/k T=2pJLC
T period
_4ds u=-wyx, sinugt +5 ) = dt=-wa, sinmt+j )= u=-wyx,sinmt+7 )= | I =-wq,sinut+/ )=
dt o ~ o ~ o ~ o ~
= Woxmco&ryot +/ +£8 = Woamcoﬁq/ot +/ +%8 = Woxmco&%t +/ +£8 = quCO%VOt +/ +£8
¢ - ¢ - ¢ - ¢ B
_d’s a=-uix,codut /)= | d=-wia,codwt+/)= | a=-uix,codumt+/)=
dt® =ufx,codut+/ +p) | =uga,codwit+/ +p) = UG X, Cogwt +/ +p)
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Appendix 6

As seen in (figure 1.3) kinetic energy of a material point W, (t) changes

2
from 0 to mig A

, making harmonic oscillations with frequency 2w, and

amplitude %{mng2 at average value equal to %mméAz.

Oscillations of potential energy W, (t) occur as previous, but with a shift of
phases is equal top . Total energywremains constant.

A
w,w,) W,07,) W

Vi

3 mwghdr | — L — [ — N - ¥

Y
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Figure 1.3 - graphs of dependence W, ,\W, and w from time t

Appendix 7
Energy of a magnetic field w,, isequal to

W, :%le :%u;[r cof2ut +2/ )].

Energy of an electric field w, is equal to

2
W, :%%:%Lli[ucoe{zmuj)].

Appendix 8

Let's consider an oscillation occurring along axis x under the law
x = Acogmt +/ ,). As a basic axis is axis x.

Harmonic oscillation can be set by means of a vector which length is equal
to amplitude A of oscillations, and the direction of the vector forms an angle with
axis x and it is equal to initial phase of oscillation. Vector projection ¢ on axis x
IS written as: x, = Acoy |,
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Figure 1.4 - The rotating amplitude vector

If this vector is made to rotate with an angular speed w,, a projection of

vector ¢ on x axis will make the harmonic oscillation described by equation (2.9)
ranging from + A to 1 A. Cyclic frequency of these fluctuations is equal to angular
speed of rotation, and initial phase ; , is equal to angle which is formed by vector

43' with a basic axis at an initial timepoint.

Appendix 9

0

2 4

Figure 1.5 - Method of vector diagram
Appendix 10

At addition of fluctuations of identical frequency and shift of phases
Goo-Jo)=°2kp (k=012.) the resulting amplitude is equal to ¢=¢,+0,.
Oscillations are in one phase (sinphase). If the shift of phases (/- / ,,)=°(2k +1)p
and A=|A - A| oscillations are in an antiphase. In both cases amplitude of the

resulting fluctuation does not change over time. Two osdlatory processes are
called coherent fluctuationd ithey are conformed in time soddference of their
phases remains constant.
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Appendix 11

Table 11.1 —Addition of mutually perpendicular periodic motions

Difference of phases Trajectory equation Graphical representation
Jo=mp y=Byx y
(m=0°2,..) A B} ______
A |0
! AX
______ cB
Jo=mp y=- EX v
(m=°1°3.) A 5
a A
GA ,\‘ X
¢B
:_ p x> y® . o_ P
=(2m+1) = EANIDID [ -_F
Jo=( ) 5 X + 57 1 A/Y% /o >
m=0,°1...
(m=0°1.. c A
\\_// X
=P
Jo 5
Appendix 12
Eﬁmqm 1 _’Il S’%
|
|
|
|
I
/ I
|
/v _l .
@ :gm > @ ng

Figure 1.6 - Vector diagram for a real oscillatory contour

Differentiating expression (2.20) on t once again | e writeslown:
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Using the last formula and expressions (2.20) and (2.18) it is possible to be
convinced that e—meoswt is the sum of three harmonic oscillations of the same

frequency, the phases which are carried out by the shift. The vector diagram of
addition of these fluctuations is represented in drawing. As seen in the drawing:

em

e - ] +ab2we

tqy = 2b w
Wi - w
. R 1 .
If we consider that »=— and =——_ the value of charge is
2L Yo JLC g
em
Oy = =
o 1 6
R + 3wl -
W\/ g&% ng
Appendix 13

Resonant frequencies for a charge (voltage on the condenser) and current are
defined by the following formulas:

— _ 2.
M/qres_'/'/ufr}es_ M/g_ 2b ’

W =W,

(m

e

Figure 1.7 - Resonant curves for current | and charge g
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Resonant curves for voltage U. and current | are given in drawings a) and

b). The maximum at a resonance of curves is higher and sharper, t h ds lef¥, i.e.
the active resistance is less. Unlike resonant curves for current at w- 0 the
resonant curves for voltage U: converge in point U. =U,,. Value U, is a voltage

occurring on the condenser when connected it to a source of constant voltage.
Amplitude value of current is achieved at w=w;,, amplitude value U¢ is

reached at w¢ .

Appendix 14

Let's mentally allocate small volume Dv where in all points speed of
movement and deformation of a medium can be considered identical and equal

respectively to Mt and ® The allocated volume possesses kinetic energy
H LX

DMAWX S _ 7 AUXE
Dw, = g g = T X8 by |
2 g+ 2¢Ht =+

where bm=r @V is the mass of substance in volume DV,
“—u)t( = - wAsin(ut - k) is the speed of a point.

The potential energy in this case is equal to:

2
D/Vp :EiD\/’
2

where E - Jung's module;

e=1X _relative lengthening or compression.
X
Considering that the speed of longitudinal waves is equal to «=./E/r , the

relative compression is: % = kAsin(ut - k).

Appendix 15

For explanation of Compton is effect we will consider elastic collision of a
x-ray photon with a quasi free electron in rest (binding energy of an electron in
atom is much less than energy that a photon can transfer to an electron).

Let's write down conservation laws of energy and an impulse:

>Sw+m,c® =>wj+cy p? +myc?; (15.1)
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>k = Pk, (15.2)

where >w and >wj—energy of a x-ray photon before collision respectively;
m,c’—energy of an electron before collision;

cy p> + m,c” - energy of an electron after collision;
i5— an electron impulse after collision;
Expressions >k and >kj are a photon impulse before and after collisions

respectively.
The vector diagram of equation 1 is given in drawing.

Figure 1.8 - Vector diagram

By means of this diagram we will pass to a scalar type of equation (15.2)
and, solving it together with equation (15.1), we will receive:

1 i(a)- 1 =222 (1 cosg), (15.3)
m,C
where value %:2,426("10'12mzlci s Compton’s | ength

Formula (15.3) is coordinated perfectly with experimental results of
Compton. It proves correctness of ideas of corpuscular properties of
electromagnetic radiation.

Appendix 16

The tunnel effect is passing of microparticles through space areas forbidden
by classical physic laws. Let a particle fly on an elementary rectangular potential
barrier from the left side (figure 1.9). If total energy of particle W is less than the
height of a potential barrier U, in point x, it will be reflected , i.e. it will turn back.
There is another situation in quantum mechanics. From particleof Sc hr 6 di n g
equation follows that there is a probability of passing different ofzero, into area
x3dx . We have the falling and reflected waves from the left side of the barrier, and
there is only a passing wave from the right side of the barrier. Into the barrier y -

function has not a wave character therefore the probability decreases almost
exponentially.
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Figure 1.9 - Passing of microparticles through space areas forbidden by laws
of classical physics

Tunnel effect is a specifically quantum phenomenon. Cold electron’s
emission from metals, alpha- decay, spontaneous division of nuclei are explained
by this effect.

A type of potential energy of a quantum harmonious oscillator is the same
as classical one. If the movement of a particle with mass m and frequency of
oscillations w occurs on axis X:

2
U(X) - ml/I;X

The sol ut i on sqouation f8ra uanturd ascnllgioe is a complex
mathematical problem. Let's consider only a power range of the quantum
harmonious oscillator:

Figure 1.10 —"A potential pit"

From the last formula it follows that the power range of the oscillator is
discrete and limited below by energy of value W, =>w/2. It is the main level of the

64



quantum oscillator. Intervals W =>w between the next levels do not depend on
quantum number n, i.e. they are identical (figure 1.10).
As the main level w, 80 the quantum oscillator cannot be stopped. For

example, because of it fluctuations of atoms in crystal lattices do not stop even at
the temperature of absolute zero. Quantum fluctuations with the minimum energy
are called zerooscillations

The concept about the quantum oscillator plays an important role in physics
of those phenomena that is caused by fluctuations of microscopic particles.

Appendix 17
Table 17.1 — Characteristics of pions
Designation of a Mass, MeV Electricc h ar ¢ Lifetime, s
pion
o 140 °1 10°
p° 135 0 10

Let's consider the interaction between nucleons. A nucleon can emit a pion if
its energy has uncertainty no less, than m,c?. In this case violation of the law of

energy conservation cannot be found. According to a ratio of uncer t ai nt vy
t i mthe"emitted pion can exist during time ¢ =>/m,c?, then it is absorbed by the

same nucleon, or another, being nearby the first one.

Let's emphasize that the exchange of particles is the cornerstone of all
interactions and the fundamental quantum property of the nature. Particles, which
emission and absorption happen with the seeming violation of energy conservation
law, are called virtual.

As a result of virtual processes p2 n+p*, n2 p+p, p?2 p+p°,
n2 n+p° asingle nucleon is surrounded by virtual p- mezon cloud (a mezon fur
coat) forming a field of nuclear forces.

At approaching of two nucleons before contact of their mezon fur coats the
conditions for an exchange of pions are created. Thus, the mechanisnof strong

interaction between nucleowsnsists that nucleons, dwxnging anong themselves

virtual pions, keep each othestrong interaction can happen according to several
schemes, for example p+n?2 n+p*+n2 n+p, n+p2 p+p +p? p+n,
n+n2 n+p°+n2 n+n.

Exchange character of nuclear forces allows to explain existence of the
magnetic moment of a neutron. The neutron spends a part of life time in a virtual
state (p +p'). Orbital movement of p-— mezon also leads to emergence of the
observed negative magnetic moment of a neutron.

Let's note that the satisfactory quantitativetheory of interaction of nucleons
by means of exchange of pions is not created. There were serious mathematical
difficulties at its development. The main reason is that nuclear forces are very
powerful.
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