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Introduction 

 

Studying the physics course creates a fundamental base of engineering - 

technical knowledge and skills of graduates of higher technical school and forms  

their scientific outlook.  

The main objectives of the course are: 

1) formation of students' skills in using fundamental laws, classical physics 

theories and methods of physical research as the basis of their professional activity; 

2) formation of students' creative thinking and scientific outlook, skills of 

independent cognitive activity, the ability to modulate physical situations. 

The course "Physics 2" studies such areas as "Maxwell's equations", "Physics of 

oscillations and waves," "Quantum physics and physics of atom", "Solid-state 

physics, nuclear and elementary particles". 

Knowledge and skills acquired in the study of physics constitute the 

foundation needed in the study of technical disciplines. 
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1 Lecture ˉ1. Electromagnetic induction. Maxwell's theory bases  

 

Lecture's content:  phenomena and law of electromagnetic induction, a basis 

of  Maxwell's  theory for an electromagnetic field are briefly described in the 

lecture. 

 

1.1 Phenomenon and law of electromagnetic induction  

 

Emergence of  electromotive forces under the influence of magnetic fields is 

called electromagnetic induction (Faraday, 1831). Cause of electric current at the 

movement of the conductor in a magnetic field is explained by the action of  

Lorentz force arising at conductor's movement. Let's consider the scheme in figure 

1.1 when two parallel wires of AB and CD are placed in a homogeneous magnetic 

field, perpendicular to the plane of the drawing and directed to us.  The left wires 

AB and CD are closed, the right ones are opened. The conducting rod BC can freely 

slide along wires. When the rod moves the speed u
C

  to the right, electrons move 

with it. Each moving charge ʝ
-
 in a magnetic field is affected by Lorentz force 

 

                                                                [ ]BeF
CCC
u= .                           (1.1)  

 

As a result electrons will start moving in the rod up, i.e. the current will go 

down. It is induction current. Lorentz force in the described experience plays a role 

of a foreign force exciting electric current.    

     

                                                                                                                                                                                     
                                                                                                                                                  

 

     Figure 1.1 

 

In this case a foreign electric  field  E is equal to: 

 

                                                        [ ]BE f
CCC
u= .                             (1.2)  

 

The electromotive force created by this field is called the electromotive force 

of induction and is marked ie. In this case   

 

               Bli ue -= .                    (1.3) 
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The minus sign is put because the foreign field is directed against a positive 

round of the contour determined by a vector B
C

 by the rule of the right screw. Thus, 

 

                                                      
dt

d
i

F
-=e .                             (1.4) 

 

So, this is Faradey's law.  Faradey's  law states: that the inducted  EMF  in a 

circuit is directly proportional to the time rate of change of the magnetic flux ʌ 

through the circuit. Unit of measure EMF induction – volt (V). 

 Lenz rule defines the sign «minus» in the law of electromagnetic induction 

and is a consequence of the law of energy conservation: induction current is always 

directed so that to counteract the reason causing it. 

 

1.2 Vortical electric field 

 

 If the contour is based in a variable magnetic field, the emergence of 

induction current testifies that the magnetic field changing in time causes 

emergence of  foreign forces in a contour. By the nature they cannot be magnetic as 

they cannot actuate based charges in motion. The role of foreign forces, according 

to Maxwell's hypothesis, plays vortical electric field E
C

, which is generated by a 

variable magnetic field (appendix 1). Then circulation of a vector E
C

 by a motionless 

contour   is equal to: 

 

                                                  
.

t
dE

L
µ

Fµ
-=ñ?

CC
                                     (1.5) 

or 

                                             .Sd
t

B
dE

L

C
C

?
CC
ññ µ

µ
-=                                               (1.6) 

 

In a differential form we will write it as 

 

                                                          [ ] .
t

B
E

µ

µ
-=Ð

C
C

                                  (1.7) 

 

This electric field, as well as a magnetic field is vortical. It found application 

in the induction accelerator of electrons – the betatron. 

 

1.3 Self-induction. Inductance 

 

The electric current flowing in the closed contour creates round itself a 

magnetic field, which induction, by Biot-Savart-Laplace's law is proportional to the 

current. The magnetic flux ʌ is linked to a contour, therefore it is proportional to 

the current of  I  in the contour: 
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                                                                 LI=F ,           (1.8) 

 

where the coefficient of proportionality  L is called inductance of a contour.  

If the force of current in a contour changes the magnetic flux linked to it 

changes as well; therefore, EMF will be induced in a contour. The emergence of 

EMF  induction in the conducting contour at current's changing  is called a self-

induction. 

Inductance unit of measurement is henry (Hn): 1 Hn=1 Wb/A. 

 Using  formula (1.8), it is possible to receive expression for inductance of the 

solenoid which depends on number of turns of the solenoid N, its length ?, areas of  

S and magnetic permeability m of  substance  the solenoid core is made of 

 

          
?

SN
L

2

0mm=  .                    (1.9) 

 

 If to apply to the self-induction phenomenon Faraday's law in case that the 

contour is not deformed and magnetic permeability does not change, we will receive 

 

     
dt

dI
Li -=e .                   (1.10) 

 

Characteristic manifestations of a self-induction take place at circuit's closing 

and disconnection of current in a circuit (appendix 1). 

 

1.4 Mutual induction 

 

Let's consider two motionless contours (1 and 2) 

are located rather close to each other. At change of 

current in one of the contours in the other contour arises 

EMF induction. This phenomenon is called as mutual 

induction. EMF, arising in contours 1 and 2, are equal to: 

 

                                                                                         Figure 1.2 

 

             
dt

dI
L

dt

d

dt

dI
L

dt

d 1
21

2
2

2
12

1
1 ; -=

F
-=-=

F
-= ee .                              (1.11) 

 

Coefficients of proportionality 21L  and 12L are called mutual inductance of 

contours. The calculations confirmed by the experience show that for lack of 

ferromagnetic materials: 

                 

                                                  1221 LL = .                          (1.12) 
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 It is possible to show that mutual inductance of two coils with the number of 

turns 21, NN , reeled up on the general toroidal core equals to: 

 

         S
NN

LL
?

21
02112 mm== .                  (1.13) 

 

Transformers operating is based on the phenomenon of mutual induction. 

  

1.5 Energy of a magnetic field 

The magnetic field is the carrier of energy. It is received through work spent 

by current for creation of a magnetic field. To change a magnetic flux at a size   of 

Fd  it is necessary to make work  LIdIIddA =F= . Then  the work on creating of a 

magnetic flux will be equal to: 

          ñ ==

I

LILIdIA
0

2 2/ .  

Therefore, magnetic energy of current can be defined as: 

 

               2/2LIW= .        (1.14) 

 

 The energy of a magnetic field can be presented as a function of the sizes 

characterizing this field in surrounding space. It is possible to show that the formula 

(1.14) can be transformed into 

 

    V
H

W
2

2

0mm= ,              (1.15) 

 

where V is the volume of the space occupied by a magnetic field. Then the 

volumetric energy density equals: 

                   
2

2

0 H

V

W
w

mm
== .                          (1.16) 

 

 Formula (1.16) is valid both for homogeneous and  non-uniform fields. It is 

true for variable fields as well. Mind that this expression is only for the 

environments where the dependence of vector ɺ
C

 from ʅ
C

 is linear, i.e. it concerns  

only  para - and  diamagnetics. 

  

1.6 Displacement current 

 

The theorem of circulation of a magnetic field intensity  

 

                     ññ =S=
SL

SdjIdH
CC

?
CC

,                          (1.17) 
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becomes incorrect in case of alternating fields. For eliminating this discrepancy 

Maxwell entered the concept of displacement current (appendix 3). The density of 

the current of displacement is equal to ,/ dtDjS

CC
µ= and the equation is: 

 

                                              
ññ µµ+=
SL

SdtDjdH
CCC

?
CC

)/( .        (1.18) 

 

1.7 System of Maxwell's equations 

 

Having added the basic facts from electromagnetism area with establishment 

of magnetic actions of displacement currents, Maxwell wrote the system of the 

fundamental equations of electrodynamics. There are four equations in integrated 

and differential forms. They are: 

 

Table 1.1 

№ Integrated form Differential form 

1 
ññ µ

µ
-=

SL

Sd
t

B
dE

C
C

?
C

 
t

B
Erot

 

 
 

µ

µ
-=

C
C

 

2 
S d 

t 

D 
j d H

L S

C
C

C
?
CC

ñ ñ ö
ö

÷

õ

æ
æ

ç

å

µ

µ
+=  

t

D
jHrot

 

 
 

µ

µ
+=

C
CC

 

3 0=ñ
S

SdB
CC

 0 =Bdi
C

u  

4 ññ =
VS

VdSdD     r
CC

 ru =Ddi
C

  

 

5 

6 

7 

Material equations 

ED
CC

 0ee=  

HB
CC

 0mm=  

Ej
CC

 g=  

  

The important conclusion follows from the first two equations: variable 

electric and magnetic fields are inseparably linked with each other, forming a 

uniform electromagnetic field. 

The third and the fourth equations testify that electric field has sources ï 

electric charges, but magnetic charges are absent; therefore Maxwell's equations 

are not symmetric with regard to electric and magnetic fields. This three equations 

(5, 6, 7) in table 1.1 are called material equations as they show individual properties 

of the environment. 

           The four equations must be supplemented by three equations reflected the 

relationship between the main characteristics of electromagnetic fields and currents. 

Here D is electric displacement,  E - electric  field, B - magnetic field, H - intensity 

of magnetic field, j - the vector of electric current density , E* - electric field of 

foreign forces, γ -conductivity. 
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Let's note that Maxwell's equations cannot be removed. It is necessary to 

consider them as the main axioms of classical electrodynamics received by 

generalization of the experimental facts. 

 

2 Lecture ˉ2. Oscillatory processes 

 

Lecture's content: mechanical and electromagnetic oscillations  are briefly 

given in the lecture. 

 

 Periodic motion or fluctuation is a process  periodically repeated  in  time. 

There are following fluctuations: free, compelled, self-oscillations, parametrical 

(appendix 5). 

 Harmonic oscillations  are called periodic ones taking place according to 

cosine (or sine) law. 

 

 2.1 Free harmonic oscillations 

 

 Free harmonic oscillations can be presented as: 

 

   () ( )00cos jw += tAtS ,        (2.1) 

 

where A  - amplitude of fluctuations (oscillations);  

0w  - own circular frequency;  

( )00 jw +t  - phase of fluctuations;  

0j  - an initial phase, when 0=t  . 

 Free harmonic oscillations are described by the uniform differential equation 

of the second order: 

     02

0 =+ SS w##   )/( 22 dtSdS=## .   (2.2) 

 The solution of  equation (2.2) is the equation of harmonious periodic motion 

(2.1). Graphs of value change S, S#, S## from t  are given in figure 2.1.  

 

 

 

 

 

Figure 2.1 –  Diagrams of value change S, S#, S## from t. 
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Oscillatory system is called an oscillator, and the system making harmonic 

oscillations is called harmonious oscillator. The differential equations and 

characteristics of various oscillators are given in appendix 5. 

2.2 Energy of harmonic oscillations 

 Total energy W of mechanical oscillations is the sum of kinetic kW  and 

potential 
ʨW  energy. Using the formulae from the table of  Item 1 (appendix 5) it  is 

possible to write down: 

 

  ( ) ( )[ ]jw
w

jw
wu

22cos1
4

sin
22

0

22

0
0

2

22

0

2

+-=+== t
Am

t
Amm

Wk ;   (2.3) 

 

  ( ) ( )[ ]jw
w

jw 22cos1
4

cos
22

0

22

0
0

2
22

++=+== t
Am

t
kAkx

Wp     (2.4) 

 

and  constWW
AmkA

WWW pkpk =====+= maxmax

222

22

w
.                  (2.5) 

 

 Graphs of dependence kW ,
pW  and W  from time are given in appendix 6. The 

total energy of an electromagnetic field W  of an oscillatory contour is me WWW += . 

An electric field with energy eW  appears between the capacitor plates while it 

charges.  There is a magnetic field with energy mW  (appendix 7) in the coil of 

inductance when the capacitor discharges. So, total energy W is experienced: 
 

          const
LI

C

q
WWW mm

me ===+=
22

22

.                 (2.6) 

 

 2.3 Addition of oscillations of identical and mutually perpendicular  

directions 

 

  Finding the law of the resulting oscillations of the system as addition of 

periodic motions is a process when this system simultaneously participates in 

several oscillatory processes.  

 A harmonic oscillation can be presented by means of the rotating amplitude 

vector (appendix 8).  

 If the system participates simultaneously in two oscillations the equations of 

which expressed: 

    

 ( )01011 cos jw += tAx , ( )02022 cos jw += tAx ,            (2.7) 
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The addition can be made by the method of vector diagrams, using the rotating 

amplitude vector (appendix 9). A projection of the resulting vector ɸ
C

 on axis x is 

equal to the sum of projections of composed vectors 

 

                            21 xxx += . 

 

 The resulting amplitude, as seen in the drawing in appendix 9 is determined 

by the theorem of cosines: 

 

                                       ( )010221

2

2

2

1

2 cos2 jj -++= AAAAA ,                                  (2.8) 

 

and the  initial phase 0j   of  the resulting fluctuation by a tangent: 

 

                                           022011

022011
0

coscos

sinsin

jj

jj
j

AA

AA
tg

+

+
= .                                          (2.9) 

 

 The equation of the resulting harmonic  fluctuation is 

 

                  ( )00cos jw += tAx . 

 

 Let’s consider the analysis of the equations in the appendix 10. 

 If periodic motions take place simultaneously along axis x and axis y, their 

equations can be written down in such a way:  

        

                                           tAx wcos= , ( )0cos jw+= tBy ,                                   (2.10) 

 

 where 0j  - difference of phases of two oscillations (shift of phases).  

 Such harmonic oscillations can take place if periodic harmonious signals are 

sent on to operating horizontal and vertical plates of an  oscillograph. To define 

resulting oscillation trajectory it is necessary to exclude time from the equations 

(2.10). Then we will have the trajectory equation:  

 

                                               0

2

2

2

02

2

sincos
2

jj =+-
ɺ

y

Aɺ

xy

A

x
.                (2.11) 

 

   Special cases resulting from this equation are given in appendix 11.  

Trajectories of the resulting movement are the complex curves called by Lissazhu's 

figures if frequencies of mutually perpendicular periodic oscillations are not 

identical. 

 

2.4 Free damping and forced electromagnetic oscillations 

 

2.4.1 Free damping oscillations 
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The periodic oscillations of ideal systems 

are given in appendix 5, table 5.1 where the 

energy stored by the system is not transformed 

into an other types of energy, i.e. there is no 

energy  dissipation in it. 

The real oscillatory contour unlike ideal 

one, (appendix 12) contains the resistor of 

resistance R connected in series with the 

condenser and the coil of inductance. In this case 

the differential equation of damping oscillation  is 

expressed: 

 

                                                     02 2

0 =++ qqq wb### ,                               (2.12) 

 

where  b - coefficient of damping 
L

R

2
=b . 

The solution of the equation (2.12) is the equation of damping oscillations 

 

                      

                                            ( )00 cos jwb += - teqq t

m
,                          (2.13) 

 

where constants 0mq  (initial amplitude) and 0j  (an initial phase) depend on 

initial conditions, i.e. from values q  and q#  in a primary time point. The graphs of 

()tq   is  shown in figure 2.2. 

The fluctuation period is equal to: 

 

                    22

0/2 bwp -=T   

and frequency         

                                                   22

0 bww -= .                                                 (2.14) 

 

We can write a time period and frequency of electromagnetic damping 

oscillations using the earlier entered values: 

 

 ( ) ( )222
4//1/2 LRLCT -=p   and   ( ) ( )222

4//1 LRLC -=w .  (2.15) 

 

Relaxation time is called the time period while damping oscillation amplitude 

decreases in e times and is expressed: bt /1= . 

There is a logarithmic damping decrement as a quantitative characteristic   of 

decreasing amplitude speed. Logarithmic damping decrement is a natural logarithm 

of the ratio of amplitude values corresponding to points of time different for the 

period.  

Figure 2.2 
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()
( ) eN

T
T

TtA

tA 1
ln ===

+
=

t
bl ,   (2.16) 

 

where eN  - a number of fluctuations  while amplitude decreases in e  time. 

A real oscillatory contour is characterized by quality factorQ , equal to p2  
multiplied by  the energy ratio ()tW   of system fluctuations  in any time point  t  to 

decreasing of the energy within the conditional period of damping oscillations 

 

                    
()

() ( )TtWtW

tW
Q

+-
=p2 . 

 

So, the contour  quality factor is equal to: 

                     eNQ p
l

p
== .                (2.17) 

  

2.4.2 Forced electromagnetic oscillations. Resonance. 

Forced electromagnetic oscillations take place if variable EMF is connected 

in series in contour with elements CLR --  : 

 

     tm wee cos= . 

 

In this case the equation of an oscillatory contour is: 

 

     t
C

q
RI

dt

dI
L m we cos=++  

 

or 

     ( ) tLqqq m wewb cos/2 2

0 =++ ### .               (2.18)  

 

The particular solution of this equation is equal to:  

                       

     ( )yw-= tqq m cos ,        (2.19) 

 

where mq  - charge amplitude on the condenser; 

y - difference of phases between charge oscillations and external EMF. 

Differentiating (2.19)  on t  we can receive the current in a contour: 

 

                    ( ) ( )2/cossin pywwyww +-=-== tqtqqI mm
# .                      (2.20) 

 

We can show from vector diagram for real oscillatory contour (appendix 12) 

that:  



14 
 

                                  

2

2 1
ö
÷

õ
æ
ç

å
-+

=

C
LR

q m
m

w
ww

e
. 

 

We can see the charge amplitude mq  (and phase φ) of the forced periodic 

oscillations is defined by EMF frequency at the given values of  CLRm ,,,e .  The 

less is the difference of own frequency  0w   and frequency of the variable EMF the 

more amplitude mq  is. Resonance is the phenomenon of sharp increase of forced 

periodic oscillations amplitude at a certain value of external frequency influence. 

External influence (EMF) frequency is a resonant frequency when the resonance 

takes place (in detail in appendix 13). 

 

3 Lecture ˉ3. Wave processes 

 

Lectureôs content: the process of periodic oscillations propagation, elastic 

waves and dispersion of waves are described in the lecture.   

Lecture objective: to study wave processes. 

  

3.1 Elastic wave  and equation of a wave 

 

Extending periodic motion is called wave process. An elastic wave is the 

propagating mechanical process of indignation in an elastic medium. Periodic 

motion can spread in elastic medium from a particle to a particle with some speed 

due to interaction between them if fluctuation in the environment is excited.  That 

doesn't make particles move but only fluctuate at balance position. Therefore, the 

main property of waves is to transfer energy without transferring a substance.  

There are longitudinal and transverse waves  depending on direction of 

particles movements near their spread  balance positions (along or across  the 

direction of   wave propagation).  

Transverse waves extend in media resisting shift (in solids). Longitudinal 

waves propagate in environments resisting to compression and stretching (in 

liquids, gases and solids). 

Locus fluctuating in an identical phase is called a wave surface. It reached by 

indignation at the given time point  is called the front of a wave.  There are many  

wave surfaces but the wave front  is one. Wave surfaces are not mobile, and the 

wave front moves. A wave can be flat or spherical depending on a form of wave 

surface (the front of a wave). 

The wave is characterized by the following parameters: l - wavelength of 

wave, the distance passed per a period of fluctuation time; ʊ - period, time of one 

fluctuation; v  - frequency, number of fluctuations per a unit of time. There is 

dependence between these parameters expressed by the formulas: 
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     ʊÖ=ul , lnu= . 

 

In general, the wave equation represents the function of time and three spatial 

coordinates.  The shift of the environment particle from balance position  x is a 

function of coordinate x and time t , i.e. ( )txf ,=x  at distribution of indignation 

along an x axis.  

At some distance x from the source periodic oscillations of particles will lag 

behind in time ut /x= (u - speed of wave propagation) if  fluctuations of the points 

lying on the plane x=0 are described by the function ( ) )cos(,0 0jwx += t At . So, the 

equation of  fluctuations of the particles lying on the plane  x is expressed: 

 

   ( ) ( )[ ]0/cos, juwx +-= xtAtx . 

 

The wave number is used for the characteristic of waves:  

 

        
u

w

u

p

l

p
===

T
k

22
,                      (3.1) 

 

it shows how many lengths of waves there are within a piece of length p2 . 

Therefore, it is possible to write down: 

 

     ( ) )cos(, 0jwx +-= kxtAtx ,         (3.2) 

 

where 0j  is an initial phase of a wave; 

)( 0jw +-kxt  - phase of a flat wave. 

The equation (3.2) is the equation of the flat running wave propagating along 

axes x in not absorbing energy medium. 

Running waves are called the waves transferring energy in space. The speed 
u in the equation (3.1) is the phase speed of a wave, i.e. wave propagation speed 

with a certain value of a wave phase. 

If  the energy   is absorbed  by  environment we'll have the following 

equation   

    )cos( 00 jwx g +-= - kxteA x , 

 

where g is coefficient of damping of a wave. 

A wave vector k
C

   is introduced when a flat can travel wave in any direction 

characterized by a single vector n
C
, perpendicular to the front of a wave: 

     

                                           nnkk
CCC

l

p2
== . 

 

In this case the equation of a flat wave is expressed:  
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    ( ) )cos(, 0jwx +-= rktAtr
CCC

, 

where zkykxkrk zyx Ö+Ö+Ö=
CC

. 

 

3.2 Wave equation 

 

There are equations of wave processes as generalized expressions of wave   

similar to the main equation of dynamics describing all possible movements of a 

material point. They are differential equations in the particular derivatives 

connecting changes of functions characterizing a wave in time and space. 

They are called  the wave equations. An example of a wave equation  of the 

flat running wave along axis x is: 

 

  
2

2

22

2 1

tx µ

µ
=

µ

µ x

u

x
.     (3.3) 

 

The equation of a flat wave (3.2) is the solution of the wave equation (3.3). 

Generally it look like (3.4) when the shift is the function of four variables: 

 

 
2

2

2

2 1

tµ

µ
=Ð

x

u
x ,     (3.4) 

where  

    
2

2

2

2

2

2
2

zyx µ

µ
+

µ

µ
+

µ

µ
=Ð

xxx
x . 

 

3.3 Energy of a wave. Umov's vector 

 

The kinetic  energy of medium volume   VD   where an elastic wave travels  is 

equal to (appendix 14): 

   ( )VkxtAWk D-=D wwr 222 sin
2

1
, 

 

where A– amplitude of the wave propagating along axes x; 

ɟ – environment density; 

ɤ – frequency. 

The considered volume also has potential energy (appendix 14): 

 

( )VkxtAWp D-=D wwr 222 sin
2

1
. 

 

The total energy is equal to the sum kWD  and pWD  

 

                                              ( )VkxtAWWW pk D-=D+D=D wrw 222 sin .                 (3.5) 
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Energy density can be calculated if this energy is divided by the contained 

volume:  

          ( )kxtA
V

W
w -=
D

D
= wrw 222 sin . 

 

Density of energy changes in each point of the environment according to the 

law of square sine, therefore the average density of energy is equal to: 

 

   22

2

1
Aw rw= .      (3.6) 

 

Energy dW , transferred by a wave through some surface by unit of time dt , is 

called  energy stream dʌ through this surface: 

 

     
dt

dW
dʌ= . 

 

The energy stream can be various in different points. That’s why the concept 

of energy stream density is introduced.  It is an energy stream through a single 

platform, perpendicular to the direction of energy transfer: 

 

                                            
^^ Ö

==
dSdt

dW

dS

dʌ
j .                    (3.7) 

 

Energy transfer speed by a wave for harmonious (sinusoidal) waves is equal 

to phase speed u. Energy dWinside a slant cylinder (Figure 3.1) with the basis of 

area dS and the forming length dtu , 

                                                                   

                ^== dSdtwdtdSwdW uau cos . 

 

We will receive the formula for energy stream density 

if this formula is put in (3.7)        

      

                         uÖ=wj . 

 

  We can use Umov's vector j
C

  for determination of 

stream density and its direction: 

 

                                                       u
CC
Ö=wj ,                     (3.8) 

 

where  n
k

CC w
u=  is a speed vector.  It is normal to a wave surface in this place 

and its module is equal to the phase speed of a wave. 

Figure 3.1 
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The average time value of energy stream density  is called  wave intensity:  

 

urwu 22

2

1
AwjI ===

C
. 

 

3.4 Wave package. Group speed. Dispersion of waves 

 

Let's consider the simplest group of waves - quasisinusoidal  wave.  It  travels 

in the linear medium as a superposition of two flat waves with close frequencies:  

 

             ( )kxtA -= wx cos01  and ( ) ( )[ ]xdkktdA +-+= wwx cos02 , 

 

where 
1u

w
=k , ( )( ) 2/uww ddkk +=+ , wwààd , kdkàà. 

The result of addition of fluctuations is: 

 

( )[ ] ( )kxtxdktdA --= wwx cos2/cos2 0 . 

 

This wave is different in amplitude from a sinusoidal wave: 

 

( )[ ]2/cos2 0 xdktdAA -= w .    (3.9) 

 

 Its amplitude is slowly changing function of coordinate x and time t. So, the 

speed of  a spreading package is the speed of a point  where  amplitude A  has any 

maximum value (center of a wave package) 02AA= . As in this point  the energy 

density is maximum so,  group speed is the speed of wave energy transferring. 

The center of a wave package moves according to the law constxdktd =-w , 

therefore group speed is equal to: 

 

         
dk

d

dt

dx
u

w
== . 

 

As kuw= , lp/2=k , 2/2 llpddk=  (l - wavelength),  

  

so,                            
l

u
lu

u
u

w

d

d

dk

d
k

dk

d
u -=+== .                           (3.10) 

 

Equation (3.10) shows that group speed can be both less, and more than phase 

speed u that is connected with dependence of phase speed on wavelength 

(frequency), i.e. on medium properties. 

The dependence of phase speed of monochromatic waves on frequency (or 

wavelength) is called dispersion. 

In the absence of dispersion a wave conserves its form.  
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4 Lecture ˉ4. Electromagnetic waves 

 

Lectureôs content: differential equation, energy and intensity of 

electromagnetic waves are briefly given in this lecture. 

Lecture objective: to study electromagnetic waves.  

 

Analysis of Maxwell's theory shows that the time-varying magnetic field 

generates a varying electric field and time-varying electric field produces a 

magnetic field. If a vortex electric field is initiated in a point of space a sequence of 

mutual transformations of electric and magnetic fields occurs in surrounding space 

of charges, i.e a variable magnetic field spreading in time and space is emerged. 

This process is periodic and represents an electromagnetic wave. 

 

4.1 Differential equation of an electromagnetic wave and its properties 

 

Maxwell's equations for an electromagnetic field far from free electric 

charges generating it ( )0=r  and macroscopic currents ( )0=j   are expressed: 

 

     
t

B
Erot

µ

µ
-=

C
C

, 
t

D
Hrot

µ

µ
=

C
C

;     

 

     0=Ddiv
C

,      0=Bdiv
C

.    

                         

Taking into account ED
CC
ee0=  and HB

CC
mm0= , these equations can be written in 

the following form: 

 

        
t

H
Erot

µ

µ
-=

C
C

mm0 ; 
t

E
Hrot

µ

µ
=

C
C

ee0 ; 0=Ediv
C

, 0=Hdiv
C

,        (4.1) 

 

where m and e - constants of permeability of the medium. 

Vectors E
C

 and H
C

 as well as their components on coordinate axes will not 

depend on coordinates  y  and  z in the case of flat wave travelling along the positive 

direction of  axis x. In this case it is possible to have, two independent groups of the 

equations from equations (4.1) presented in projections on coordinate axis: 
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E
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µ
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µ

µ
ee0 ;        (4.2) 
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H
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µ
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µ

µ
ee0      (4.3) 

 

and equations 
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                        00 =
µ

µ

t

H xmm , 00 =
µ

µ

t

Exee .         (4.4) 

 

Equations (4.2) can be given as: 

 

                       
2

2
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2

t

E

x

E yy

µ

µ
=

µ

µ
meme      and      

2

2

002

2

t

H

x

H zz

µ

µ
=

µ

µ
meme .                (4.5) 

 

The comparison of equations (4.5) with elastic wave equation (3.3) shows 

that equations (4.5) are the electromagnetic wave equations. 

Solutions of these equations are the functions:  

 

                  ( )1cos jw +-= kxtEE my
 and ( )2cos jw +-= kxtHH mz .        (4.6) 

 

The main properties of electromagnetic waves follow from equations (4.2) -

(4.6). 

4.1.1 Equations (4.4) show that xE  and xH  depend neither on x, nor t. 

Therefore  0== xx HE  for a variable field of a flat wave and vectors E
C

 and H
C

 are 

perpendicular to the direction of wave propagation, i.e. electromagnetic wave are 

transverse.  

4.1.2 The comparison of  equations (4.5) with ones (3.3) shows that the phase 

speed of an electromagnetic wave depends on medium properties: 

 

     
emme

u
00

1
= .       (4.7) 

 

Speed of an electromagnetic wave in vacuum ( )1==me ,  

 

smc /103
1 8

00

Ö==
me

. 

 

4.1.3 Equations (4.5) testify that vectors E
C

 and H
C

 of  electromagnetic wave 

fields are mutually perpendicular: u
C

, E
C

, H
C

 form a right screw system (figure 4.1). 

 

 
                   

                        Figure 4.1                                    Figure 4.2 
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4.1.4 The initial phases in equations (4.6) are equal: 21 jj=  and 
2

0

2

0 mm HE mmee = . 

Therefore, fluctuations of vectors E
C

 and H
C

 occur sinphase (in one phase) 

(figure 4.2) and their instant values are connected by a ratio: 

 

 HE mmee 00 = .    (4.8) 

 

The equations of  flat wave propagating in homogeneous isotropic medium in 

a vector form are expressed: 

 

  ( )jw +-= kxtEE m cos
CC

,    ( )jw +-= kxtHH m cos
CC

. 

 

4.1.5 In each point of an electromagnetic field vectors E
C

 and H
C

 make 

harmonic oscillations of identical frequency (wave frequency), therefore an 

electromagnetic wave  is a monochromatic wave. 

 

4.2 Energy of an electromagnetic wave. Poynting's vector 

 

Energy transfer is connected with an electromagnetic wave. Energy density of 

an electromagnetic field is equal to the sum of energy density of electric and 

magnetic fields in an isotropic medium: 

 

                
22

2

0

2

0 HE
w

mmee
+= . 

 

The ratio between field vectors E
C

 and H
C

 of an electromagnetic wave (4.8) 

shows  that the energy volume density of electromagnetic waves is expressed: 

 

      
u

em
mememmee

EH
EH

ʩ
EHHEw ===== 00

2

0

2

0
,                 (4.9) 

 

where  u - speed of a wave (4.7). 

 We will receive energy stream density S  if  expression  (4.9) is multiplied by 

u 
     EHwS == u .    (4.10) 

 

As vectors E
C

 and H
C

are mutually perpendicular and form a right screw 

system (figure 4.1) with the direction of propagation, it is possible to express 

formula (4.10) as: 

 

     [ ]HES
CCC

= .       (4.11) 
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Vector S
C

 is called  Poynting's vector. It is directed towards the propagation 

of an electromagnetic wave and its module is equal to energy transferred   by an 

electromagnetic wave per a unit of time through a single platform, perpendicular to 

the direction of wave propagation. 

The energy density of a travelling harmonious electromagnetic wave is: 

 

             ( )kxtES m -= wmmee 22

00 cos/ . 

 

Wave intensity  I   is equal to average value of energy stream density: 

 

   2/// 2

00 mESI mmee==
C

,     (4.12) 

 

i.e average value of a square cosine is 1/2. 

 

4.3 Radiation of electromagnetic waves 

 

Process of excitement of electromagnetic waves by any system in  a space is 

called  wave radiation  and the system is called radiating system. 

According to classical electrodynamics electromagnetic waves are excited by 

moving electric charges with acceleration. An elementary radiating system is an 

electric dipole and its moment ʨ
C

 changes in time. Such dipole is called an 

elementary vibrator. If a radiating system is electric neutral and its sizes are small in 

comparison with radiated wave length lwe have a wave zone ( lððr , where r  is the 

distance from the system). In this case a radiation field is close to a radiation field of 

an oscillator with the electric moment similar to the radiating system. 

Moment ʨ
C

  of a linear harmonious oscillator changes in time according to 

the law  

     tʨʨ m wcos
CC
= .    (4.13) 

 

In homogeneous isotropic medium duration of wave passing to the remote 

points from a dipole in distance r  and the phase of fluctuations are identical. 

Therefore  the wave front is spherical in a wave zone. Wave amplitude decreases 

with the increase of distance r  from the dipole:   

                                            

                                                 mE ~ mH ~ qsin
1

r
,                                        (4.14) 

 

where q - an angle between an axis of a dipole and a radius of vector r
C

 

(figure 4.3). 

Figure 4.3 shows that vector E
C

  is directed to the meridian in each point of 

the wave surface and vector H
C

 - tangentially to the parallel, forming the right screw 

rule with Poynting's vector S
C

. Intensity of a wave is 
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   I ~ q2

2
sin

1

r
.                            (4.15) 

 

This dependence is represented by means of a directivity diagram of  dipole 

radiation  (figure 4.4). Expression (4.14) and the given diagram show that the dipole  

radiates as much as possible in the equatorial plane ö
÷

õ
æ
ç

å
=

2

p
q  but along the axis 

( )0=q  it does not radiate. Power of radiation depends on the frequency of 

oscillations  and is proportional 4w .  

 

 

 

 

 

 

 

 

 

 

 

                    Figure 4.3                    Figure 4.4 

 

5 Lecture ˉ5. Wave optics 

 

Lectureôs content: basic concepts of wave optics are given in the lecture.  

Lecture objective: to study basic concepts of wave optics. 

 

5.1 Light wave 

 

Coincidence of electromagnetic waves speed value in vacuum   

      

                                        smʩ /103
1 8

00

Öº=
me

, 

 

with the speed of light measured by astronomical methods served as the basis for 

the conclusion that light is an electromagnetic wave. All properties of 

electromagnetic waves are the same for the light. 

 

   n=em         (5.1) 

 

is called a refraction index. The speed of electromagnetic waves or light in a 

medium is: 
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n

ʩ
=u .        (5.2) 

 

Permeability constant m does not differ practically from one unit for the 

majority of transparent substances, therefore 

 

   e=n .       (5.3) 

 

The length of a light wave in a medium is equal to: 

 

     
n

0ll= , 

where 0l - wavelength in vacuum. 

Light intensity I   is defined by Poynting's vector S
C

 (4.11), therefore 

 

   I ~ 22 nAnEm = ,     (5.4) 

 

i.e. it is proportional to the medium refraction index  and a square  of a light wave 

amplitude. 

The vector of electric field intensity is used as a light vector since 

physiological, photochemical, electric and other actions of light are caused by 

oscillations of the electric vector. 

Light waves are transverse, but in natural light (emitted by usual sources) 

oscillations occur in the most various directions, perpendicular to a ray – a line  

along which light energy extends. Existence of these oscillations is explained by 

radiation of a shining body consisting from the waves emitted by its atoms. Process 

of radiation of a separate atom lasts near 810-  s. During this time wave trains 

manage to be formed (discontinuous radiation of atoms in the form of separate 

impulses). Wave trains impose on each other and form the light wave emitted by a 

body. The plane of oscillations for each train is oriented in a random way, therefore 

in the resulting wave the oscillations of various directions are equally probable. 

 

5.2 Light interference. Coherence 

 

The phenomenon of light interference consists of mutual amplification of 

light waves in one point of space and attenuation – in others while imposing. A 

necessary condition of waves interference is their coherence. 

Coherence is coordinated passing of several oscillatory or wave processes in 

time and space. 

Monochromatic waves satisfy the condition of specified frequency and 

constant amplitude. The real source does not give strictly monochromatic light (5.1) 

since radiations of separate atoms are not in harmony with each other, because the 
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phases of their waves are shifted on random values. Therefore, coherence of waves 

in time and length is necessary for a steady picture of interference. 

The coherence is that the difference of phases of two oscillations remains 

invariable in one point of space; it  is called  temporary coherence. The period of 

time during which the initial phase will take the value different   from the primary 

value on p  is called time of coherence. 

The coherence is called spatial when the difference of oscillation phases in 

different points of a wave surface is constant. The distance is called coherence 

length, if  the reached values of phase difference is equal to p.  

Oscillations created by a wave are not coherent outside of coherence time and 

coherence length.   

Therefore, the necessary condition of wave interference is the equality of 

frequencies and constant difference of phases (coherence of waves) in time. It is 

possible to create coherent light oscillations by means of usual light sources only by 

one way – by "splitting" of the same light wave on two ones and then to combine 

them. 

The superposition of light waves conforms to the superposition principle   in 

each point of space, therefore resulting intensity is equal to 21 EEE
CCC
+= .  It is 

possible to apply the method of vector diagrams if vectors 1E
C

 and 2E
C

 fluctuate in 

one direction (appendix 12). Using  expressions (2.5) and (5.4) we  can find the 

intensity of the resulting wave: 

 

   ( )122121 cos2 jj-++= IIIII .   (5.5) 

 

Intensity 21  III +ð  in space points where ( )0  cos 12 ð-jj , and intensity 

21  III +à  where ( )0  cos 12 à-jj . 

The difference of oscillations phases  in the point of supervision of an 

interferential picture is: 
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where 21, SS  - the ways passed by two coherent waves from the point of their 

division to the point of supervision of an interferential picture, 1u and 2u - phase 

speeds of these waves in media with   refraction index  1n  and 2n , 0l - wavelength 

in vacuum. 

The product of geometrical length S of light wave path by the refraction 

index of a medium is called   optical path length L , and 12 LL -=D - optical  path 

difference. 

Difference of phases jD  and optical path length D are connected by the ratio: 

   j
p

l
D=D

2
.      (5.6) 
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Using expression (5.6) it is possible to receive conditions of maximum and 

minimum for the resulting oscillation intensity: 

21max III +=  at pj m2=D , where ,...2,1,0=m and l
l

km ==D
2

2 , 21min III -=  at 

pj )12( +=D m , where ,...2,1,0=m and 
2

)12(
l

+=D m . 

 

5.3 Dispersion of light 

 

Dispersion of light is called dependence of refraction index on frequency. 

Dispersion of light is a result of electromagnetic waves interaction with optical 

electrons as a part of a substance. Optical electrons are the shared electrons weakly 

connected with atoms and molecules. That is why Maxwell’s electromagnetic 

theory could not explain this phenomenon. According to Lorentz's classical 

electronic theory dispersion is the result of interaction of electromagnetic waves 

with a substance.  Optical electrons (harmonious oscillators) make compelled 

fluctuations radiating their own electromagnetic waves forming in total a secondary 

wave. 

The electron is affected by three forces: quasi-elastic, returning force 

rmF
CC

2

0w-= , caused by its interaction with a nucleus and other electrons; resistance 

force ub
CC

mF 2-= , expressing  loss of energy due to the radiation and  a transition of 

a part of electron oscillatory energy into atom translational; compelling force caused 

by the action of electric field of the falling electromagnetic wave. 

In such conditions the differential equation of compelled oscillations can be 

presented in the form: 

    t E
m

e
rr r m wwb cos2 2

0

CC#C##C -=++ , 

 

where r
C

 - shift of an optical electron; 

m  and 0w  - its mass and own frequency of oscillations; 

b - coefficient of attenuation of free oscillations of an electron; 

mE
C

 and w - vector of intensity amplitude  and frequency of a variable field. 

If a medium does not absorb light ( )0=b , the amplitude of compelled 

oscillations is 

     
( )22

0 ww -
=

m

Ee
r m

m

C
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. 

 

 Polarization of a medium at shifting optical electrons is expressed: 
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where c - electric susceptibility of a substance; 

0n  - concentration of atoms (medium molecules). 

So,     

                                               
( )22

00

2

0

wwe
c

-
=

m

en
, 

     

( )22

00

2

02 11
wwe

ce
-

+=+==
m

en
n .       (5.7) 

 

The dependence curve ()wn  is presented in figure 5.1 corresponding to 

equation (5.7). Value n  monotonously increases from the value  close to 1,  to   ¤+   

process where  w increases  from 0 to 0w .   Value n   changes abruptly from ¤+  to 

¤-  when w= 0w   and then in the process of further increase from 0w  to ¤ n   

increases monotonously again from ¤-  to 1. Unlimited increase of n  at 0ww­  is 

physically senseless. Such result is received because energy losses connected with 

the radiation of secondary waves as well as impacts between atoms and other 

reasons are not considered. A continuous curve in figure 5.1 is drawn with regard to 

losses. Abnormal dispersion takes place in the field of the frequency close to the 

own one, where 0  / àwddn  and we have normal dispersion in the others, where  

0  / ðwddn . 

 

 

 

 

 

 

 

 

                                     

 

Figure 5.1 

 

6 Lecture ˉ6. Thermal radiation. Corpuscular properties of 

electromagnetic radiation 

 

 Lectureôs content:  quantum nature of radiation is briefly given in the 

lecture. 

Lecture  objectives:  

- to study the phenomena of radiation of a black body, photoeffect and 

Compton's effect;  

-  to study the role of quantum mechanics in modern physics and learn basic 

principles of quantum mechanics. 
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6.1 Properties and characteristics of thermal radiation 

 

The electromagnetic radiation is called thermal radiation emitted by a 

substance and occurring due to changing its internal energy (energy of thermal 

motion of atoms and molecules). 

Thermal radiation is the only radiation capable to be in thermodynamic 

balance with a substance. The statistical balance will establish in time if a heated 

body is placed in a cavity impermeable for radiation. In this case the body will 

absorb energy of radiation in a unit of time as much as it will radiate itself. Thus, 

the distribution of energy between the body and radiation will stay invariable for 

each wavelength, but radiation density in space between the body and walls will 

reach some certain value, corresponding a given temperature. Established radiation 

in this cavity being in statistical balance with the heated body is   the equilibrium 

thermal radiation. Thermal radiation has a continuous range of frequencies 

(lengths of waves) with maximum intensity at a certain frequency (wavelength).  

Let's consider the main characteristics of thermal radiation emitted by any 

body. 

 Power luminosity TR  is   energy equal to a full energy stream ʌ emitted 

inside out by surface unit S of a radiating body in all directions (within a space 

angle p2 ): 

 

    
dS

dʌ
RT = .      (6.1) 

 

Power luminosity is connected with a power luminosity spectral density of a 

body 
Tr ,w  (emissive ability): 

           ñ
¤

=
0

, ww drR TT .      (6.2) 

 

Let's consider a platform dS of a body surface on which the radiation stream  

Tdʌ ,w  falls. A part of this stream 
Tʌd ,w
¡ is absorbed by the body, and 

Tʌd ,w
¡¡ is 

reflected. The shares of absorbed and reflected energy are characterized by 

dimensionless values: absorptive ability 
Tʘ,w  and reflective ability 

Tb ,w   of a body 
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,
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w

¡¡
= .                   (6.3) 

 It is obvious that  

                       1,, =+ ʊT ʚa ww .    (6.4) 

 

The body is called absolutely black if it completely absorbs the radiation of 

all frequencies falling on it: 1, =Tʘw , 0, =Tbw . A good model of absolutely black body 

is the small hole in an opaque closed cavity. There is an interrelation between 
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reflective and absorptive abilities of opaque bodies established by G. Kirchhoff in 

1859 called Kirchhoff's law: the relation of power luminosity spectral density of a 

body to its absorptive ability does not depend on a body material and is the function 

of temperature and frequencies ( )Tf ,w  for all bodies. 
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Function ( )Tf ,w  is called Kirchhoff's function. The formula (6.5) shows that 

emissive ability of any body can't exceed emissive ability of a black body at the 

same temperature values. 

 

 6.2 Laws of thermal radiation of a black body and Reyleigh-Jeans' 

formula 

 

The experimental investigation of thermal radiation of an absolutely black 

body established the dependence ( )Tf ,w  at various temperatures (figure 6.1). As see 

from figure power luminosity TR  of an absolutely black body is equal to the area 

under a curve ( )Tf ,w  and it increases with temperature. The maximum emissive 

ability is displaced towards big frequencies (shorter waves) while temperature 

increases: ωm1 <ωm2 <ωm3.   It is established experimentally that: 

 

                                               4TRT s= ,                                      (6.6) 

 

bTm =w ,                                        (6.7) 

 

where s – Stephan-Boltzmann constant; 

  b  – Wien constant.  

Ratio (6.6) is called Stephane-Boltzmanm's law, and a ratio (6.7) – Wienôs 

displacement law. These two laws are important in the practical relation and played 

the essential role in the development of thermal equilibrium radiation theory. 

 

 

 

 

 

 

           

 

 

 

Figure 6.1 
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An attempt to explain theoretically regularities of thermal radiation was made 

by Rayleigh and Jeans using the classical statistics theorem of equal distribution of 

energy according to freedom degrees. In this connection equilibrium thermal 

radiation was considered in a closed cavity. For Kirchhoff's function they received: 

 

    ( ) kT
c

Tf
22

2

4
,

p

w
w = .      (6.8) 

 

Comparing function graph (6.8) with the experiment we can see that 

coincidence is observed only in the field of small frequencies. Fundamental 

difference is observed in the field of big frequencies: at 0­w , ( ) ¤­Tf ,w  (a 

dotted curve in figure 6.1). Power luminosity TR   of an absolutely black body in 

Rayleigh-Jeans' theory  is also infinite that is physically senseless. 

The set of all facts showed that the classical physics incorrectly describes 

thermal radiation in the field of high frequencies. Developed situation in the theory 

of radiation, known in the history of physics as "ultra-violet catastrophe", led to the 

necessity of fundamental physics revision. 

 

6.3 Plank's hypothesis and formula  

 

The correct expression for Kirchhoff's function and the theoretical basis for 

spectral regularities of black radiation were given first by the German physicist    

M. Planck.  He  suggested that energy of a harmonious oscillator, fluctuating with a 

certain frequency ɤ, can accepts only certain discrete values equal to the whole 

number of elementary portions – energy quantum: 

      

                                                w>nW= ,           (6.9) 

 

where p2/h=>  – Plank's  universal  constant,  ...3,2,1=n  - a whole 

number. 

On the basis of this assumption Planck received a formula for  emissive 

ability of an absolutely black body:  

 

    ( )
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22

3

-
=

kTc
Tf

wp

w
w

>
.   (6.10)  

 

The Plank's formula is completely coordinated with experimental data in all 

interval of frequencies from 0 to ∞. All experimentally discovered laws of thermal 

radiation were explained on its basis; Stephan-Bolzsman and Wien's constants are 

calculated too. This formula transforms into Rayleigh-Jean's formula in the field of 

small frequencies. 
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All these facts say that Planck's hypothesis of corpuscular character of 

electromagnetic radiation is right. It was Planck's idea that became the first impulse 

for development of quantum physics.  

 

6.4 Photons. Compton's effect 

 

Developing M. Planck's idea, A. Einstein assumed that light is not only 

emitted and absorbed, but it also spreads in quantum, i.e. discretion is the main 

property of light. It consists of separate particles – photons. Photon energy  W  (light 

quantum), according to Einstein's hypothesis, equals: 

 

    w>=W ,      (6.11) 

 

where w – cyclic frequency of a light wave. 

The photon always moves with the speed  c = 3Ā10
8
  m/s. Photon impulse is: 

    

                     k
c

ʨ >> ==
w

,        (6.12) 

 

where lpw /2/ == ck   – module of a wave vector k
C

 directed along the vector 

of  light wave distribution speed . In a vector form this formula is expressed: 

 

          kʨ
C
>

C
= .                                              (6.13) 

 

The relation between energy and photon impulse is: 

 

         cpW = .       (6.14) 

 

 The relation between the mass and energy shows that a photon has a mass: 

 

    
22 cc

W
m

w>
== ,       (6.15) 

 

but unlike other particles the photon hasn't  a rest mass  00 =m . 

So, the photon is a quantum of electromagnetic radiation. Like any particle it 

has energy, an impulse and mass. These corpuscular characteristics of a photon are 

connected with wave characteristics of a wave, frequency and a wave vector. 

Corpuscular properties of electromagnetic radiation were confirmed in a number of 

physical experiments.  

In 1922, A. Compton showed experimentally that at dispersion of  X-rays by 

free electrons their frequency (wavelength) changes according to the law of 

collision of two particles – a photon and an electron. The schematic diagram of 

Compton's experience is given in figure 6.2. 
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Figure 6.2 

 

Characteristic property of Compton's effect is changing of wavelength 

lll -¡=D   that depends neither on the falling radiation wavelength, nor on 

substance, where a dispersion occurs, but it is defined only by the dispersion angle       

q: 

  () ( )qllqll cos1-=-¡=D C ,   (6.16) 

 

where Cl  – Compton's  wavelength  of an electron, it is equal to ʪ121043,2 -Ö , 

(explanation of Compton's effect is presented in appendix 15). 

 

7 Lecture ˉ7. Wave properties of substance 

 

Lecture content: some elements of quantum mechanics are briefly stated    

in the lecture. 

Lecture objective: to study wave properties of substance.  

 

In classical physics there was an idea of basic distinction of the nature of 

particles and waves. The particle is discrete, concentrated in a very small volume, 

as to the wave, it always occupies final part of space (maybe very big).  Waves 

partially take place in the second medium at meeting with a barrier. They partially 

reflect themselves and can interfere between one another. A particle always proves 

to be a whole unit, incapable to interfere.  However, in the 20s of the XX
th

 century 

the notions of waves and particles were united in the conformity with experimental 

facts in physics of microcosm. The fundamental law named corpuscular – wave 

dualism of a substance was discovered. 

 

7.1 De Broglie's hypothesis and formula 

  

The dualism of waves and particles was formulated for the first time in 1924 

by Louis de Broglie. De-Broglie's idea meant that the dualism is not a feature of 

only optical phenomena, but it has a universal value. He supposed that substance 

particles together with corpuscular properties have wave properties as well. De 

Broglie transferred the rules of transition from one physical picture to another both 
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true for light (electromagnetic radiation) and particles. De-Broglieôs hypothesis is a 

hypothesis of universalism of corpuscular - wave dualism according to which not 

only photons, but also electrons and other micro particles of matter have both 

corpuscular and wave properties. 

Let's write down the energy and impulse of a photon and a material particle, 

using De-Broglie’s hypothesis.  

 

Table 7.1 

Photon 
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h
p

hW

C
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=
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Material particle 

u
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mp
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Particle energy and particle impulse 

through wave characteristics 
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c

hh
p
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C
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C

>

=

==
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l

nw

 

 

Therefore, if a particle has corpuscular characteristics - energy W  and 

impulse p , the corresponding wave characteristics of the particle, frequency w and 

wavelength l, are connected with corpuscular ratios: 

 

     
>

W
=w , 

p

>p
l

2
= .    (7.1) 

 

The waves associated with freely moving particles are called waves of De 

Broglie. So, to a moving electron (or another particle with not really high energy  (υ 

<< c) a wave process corresponds. The wavelength of this process is: 

 

    
u

l
m

h
= ,     (7.2) 

 

where m  and u – mass and speed of a particle. 

 

7.2 Experimental  confirmation of de Broglie's  hypothesis  

 

American physicists K. Devison and L. Dzhermer established that selective 

reflection of electron bunches from a metal surface on certain angles is observed 

while reflecting.  

The parallel mono energetic bunch from an electron tube T was directed to 

target M and the reflected electrons were caught by collector K connected to a 

galvanometer. 
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The accelerating voltage changed continuously 

at the fixed angle of the bunch falling from the crystal 

surface and thus indications of the galvanometer were 

registered.  The intensity was maximum at certain 

angle ɗ. 

The experience with selective reflection of 

electrons from a crystal surface represents analogue 

diffraction reflection of X-rays from a crystal by 

Bragg's method. 

Calculations by Bragg's formula were 

completely coordinated with calculations λ by de 

Broglie's formula. 

A large number of experiments (diffraction picture of electrons, atoms, 

molecules) passing through thin metal plates confirmed de Broglie's hypothesis as 

well. 

 

7.3 Some properties of de Broglie's waves  

 

According to de-Broglie’s hypothesis the movement of a free electron can be 

compared with a monochromatic wave length 

  

u
l

m

h
= . 

 

 In the case of dispersion, we must differ two speeds of waves - phase and 

group speed which reflect wave properties of De-Broglie's waves. Calculations 

show that electronic waves have big dispersion, group speed is equal to the speed of 

particle ɡ.   

Thus, it is possible to present the link between corpuscular and wave 

properties of free particles having the mass and speed as: 

 

Table 7.2 

Corpuscular    properties Wave   properties 

Particle speed      ɡ 

Particle impulse   p=mɡ  

Energy of a free particle   

m

p
mcW

2

2
2 ==  

De-Broglie’s wavelength 
p

h

m

h
==
u

l  

De-Broglie’s wave frequency 
h

W
=n  

De-Broglie’s waves group speed u = ɡ 

Phase  speed      
v

ʩ
ph

2

=u  

 

 

 

 

Figure 7.1 
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7.4 Heisenbergôs uncertainty principle  

 

In classical mechanics, the particle condition at the moment is defined by the 

value of coordinates and an impulse. They are so called dynamic variables. That 

microparticles have wave properties leads inevitably to the fact that concepts 

characterizing a particle in classic mechanics must be limited. 

However, we receive some information on microparticles, observing their 

interaction with devices. Therefore the results of measurements are expressed in the 

terms accepted for macrobodies, i.e. using values of dynamic variables.  

The originality of properties of microparticles  is reflected in the fact that 

coordinates and impulse of a particle cannot have certain values at the same time. 

These restrictions are not defined by perfection of measuring equipment, and 

express fundamental properties of matter. So, for example, an electron (as well as 

any other microparticle) cannot have exact values of coordinate x  and impulse 

components xp  at the same time. Uncertainties ʭD  and ʭʨD  satisfy the expression: 

 

   >²DÖD ʭʨʭ .      (7.3) 

 

The expression similar to (7.3), takes place for  y   and  ʫʨ, z  and zp , and 

also for energy and time  

 

   >²DÖD tW .      (7.4) 

 

Expressions (7.3) and (7.4) are called uncertainty relations. For the first time 

they were established by W. Heisenberg in 1927. 

According to (7.4) it is necessary to have time on less than Wt DºD />  to 

measure energy with error WD . "Degradation" of power levels of hydrogen-like 

atoms can be an example (except the main state). It is explained by the fact that 

electron life time in all excited conditions is approximately 810- s. Degradation of  

levels leads to broadening of spectral lines (natural broadening). If a system is not 

stable energy always has non removable statistic error no less than: 

 

t
W >ºD ,       (7.5) 

 

where t ï life time of a system. 

The statement that the product of uncertainties of values of two interfaced 

variables cannot be in the order of value less than Planck's constant ǩ, is called   

Heisenberg's uncertainties principle. 

 

7.5 Statistical interpretation of De Broglie  waves. Wave function 

 

Heisenberg’s uncertainties lead to probabilistic description of microparticles 

movement that allows to combine organically their corpuscular properties with 
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wave ones. According to statistical interpretation, intensity of de Broglieôs waves of 

in any place of space is proportional to the probability to find a particle in this 

place.   

The major elements in the fundamental physical theory are the concept of a 

state and the equation describing dynamics (change) of the state. 

In classical mechanics the state of a particle at the present time moment is set 

by coordinates  x, y, z and impulse  xp , 
yp , zp , and the main equation is Newton’s 

second law. In a microcosm physics the state of microparticles can be described 

only by a function having wave properties.  

In quantum mechanics the state of a microparticle is set by wave function 

( )tzʫʭ ,,,Y , which is the function of spatial coordinates and time. The change of this 

state in time is described by Schrºdinger's equation in the nonrelativistic case. It is 

the main equation of the quantum theory.  

The wave function is a field in mathematical sense (as it is complex, the 

waves described by function Y, are not observable). Interpretation of physical 

sense of wave function was given for the first time by M. Bourne. It is as follows: 

Square module ( )2,,, tzʫʭY  of complex function Y is the density of probability 

to find a particle in volume dV  near the point with coordinates x, y, z. The 

probability of finding a microparticle point at time in this volume is given by 

expression: 

    ( )dVtzyxdP
2

,,, .     (7.6) 

 

It is already observable value. 

Function Y must satisfy some natural conditions. It has to be continuous and 

single-valued everywhere. It is necessary to normalize this function so that the 

probability of a reliable event should be equal 1: 

 

    ( ) 1,,,
2

=Yñ dVtzyx
V

.    (7.7) 

 

7.6 Schrºdinger's equation 

 

Change of a state in time, i.e. in the nonrelativistic case dynamics of a 

microparticle  is described by the non-stationary equation of  Schrödinger. It is the 

main equation of the quantum theory. 

 

    ( )Y+DY-=
µ

Yµ
tzyxU

mt
i ,,,

2

2>
> ,   (7.8) 

 

where 1-=i  - imaginary unit; 
m  - mass of a particle; 

D - Laplace's operator; 
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U  - potential energy of a microparticle (in the case, when U  does not depend 

on t ). 

Schrödinger's equation plays the role in nonrelativistic quantum mechanics 

the, as the equation of Newton's second law does in classical mechanics. 

If a microparticle is in a stationary force field and its potential energy does 

not depend obviously on time, in this case the stationary equation of Schrödinger 

takes place: 

 

    ( ) 0
2

2
=Y-+DY UW

m

>
.                            (7.9) 

 

Parameter W  in this equation has meaning to total energy of a particle, and 

the solution of this equation ( )zyx ,,Y  is function of spatial coordinates. 

 Functions ( )zyx ,,Y  satisfying to the equation (7.9) at this ( )zyxU ,,  are called  

own functions. Values of energy W  are called own values. They are solutions of the 

Schrºdinger's equation. 

8 Lecture ˉ8. Solution of Schrºdingerôs equations. Quantum numbers. 

Principle of Bohrôs conformity 

 

Lecture content: application of the equation of Schrödinger for various 

quantum mechanical tasks, and the principle of Bohr’s conformity are briefly 

described in the  lecture. 

Lecture objectives:  

– learn to apply Schrödinger’s equation for various quantum mechanical tasks 

solution;  

– study the principle of Bohr’s conformity. 

 

8.1 Examples of Schrºdinger equation solutions. Principle of Bohr's  

conformity  

 

8.1.1 A microparticle  is in  one-dimensional potential pit of infinite depth.  

Let's suppose that a particle with mass  m  can move only along  Ox axis.  

This movement  is limited by impermeable walls  for the particle, which coordinates 

are x=0 and x=L (this task is similar to a task about free electrons in metal in the 

classical electronic theory). 

Potential energy of the particle in such a field can be seen in (Figure 8.1). As 

the psi-function of the particle depends only on the coordinate x, the stationary 

Schrödinger’s equation (7.9) in this task is expressed: 

 

            ( ) 0
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>
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                                              Figure 8.1 

 

The particle can not get out of the limits of the pit therefore let’s consider 

() 0=Yx  in areas 0  àx  and  Lx   ð . It has to be equal to zero on the pit borders too that 

follows from a condition of a continuity of psi-function: 

 

    () () 00 =Y=Y L .     (8.2) 

 

Equalities (8.2) are the boundary conditions added to equation (8.1). Within a 

pit (in this area 0=U ) equation (8.1) is expressed: 

 

    0
2

22

2

=Y+
Y

W
m

dx

d

>
.     (8.3) 

 

The solution of this equation consists in finding possible values of total   

energy of particle W  (a power range) and wave functions energy corresponding to 

these values of energy ()ʭY . 

Equation (8.3) is known from the theory of oscillations. It answers condition 

(8.2) only at certain values of energy of a particle  

 

    2

2

22

2
n

mL
Wn

>p
= ,     (8.4) 

 

where ...3,2,1=n - whole numbers. 

This result shows that the power range of a microparticle in a potential pit is 

discrete, i.e. energy of a particle is quantized. Quantized values of energy nW  are 

called energy levels, and n  is the main quantum number. 

 Own functions of a particle corresponding (8.4) are: 

 

    () ö
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õ
æ
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å
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p
sin , Lxo ¢¢ .     (8.5) 

 

Coefficient A  is found from a normalization condition (7.7). 

Finally we have 
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    ()
L
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p
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=Y .     (8.6) 

 

In figure (8.2) the scheme is drawn for a particle power levels in a potential 

pit (a). Function graphs ()xnY  (b) and graphs of probability density dxdP/  (c) of 

particle detection are presented in the vicinity of points with coordinates x . 

Figure 8.2 illustrates fundamental difference in behavior of quantum and 

classical particles. So, a classical particle can possesses any energy in a pit, 

including 0min =W  corresponding a particle placed on the bottom of a pit. The 

energy range of a quantum particle is discrete, and its minimum energy corresponds 

to value  n=1 about  is not equal to zero. A quantum particle cannot be on the 

bottom of this pit. A classical particle can be found with equal probability in any 

point of a pit. A quantum particle being in the lowest power state ( )1=n  for 

example, can be found with the greatest probability   in the center of a pit. But the 

probability  density of finding a quantum particle at the edges of a pit is equal to 

zero for any state. Using Schrödinger’s equation in relation to various cases is given 

in appendix 16: tunnel photoeffect, harmonious oscillator.                              

 

        
 a                                  b                                  c 

                                                  

                                                           Figure 8.2 

 

8.1.2 Principle of Bohr’s conformity 

The results of quantum mechanics at large quantum numbers must 

correspond to classical results. It is Bohr's principle. 

Equation (8.4) shows that energy difference of two nearby levels is: 
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Expression (8.7) shows that the increase of mass  m   of  a particle or value of 

area of its localization L  reduces an interval between nearby levels.  The interval 

value WD  increases linearly with the increase of quantum number n .  

Let's find the relation WW /D , using formulae (8.4) and (8.7): 

 

                                 
2

12

n

n

W

W +
=

D
, when n>>1,  

nW

W 2
º

D
.                 (8.8) 

 

The received result  shows that with growth  of number n (8.8) the distance 

between the nearby levels of energy  WD  becomes small in comparison with  the 

energy of a particle. In this case it is possible to neglect discreteness of a power 

range, i.e. the quantum description becomes close to the classical ones. Amplitude 

values of probability density equal to L/2  and are identical for all n . The number 

of function knots (zero) ()xnY  increases with growth of  n . At big 1  ððn  maxima 

and minima of a curve follow one another so closely that the curves and we have a 

classical result. 

 

8.2 Orbital and magnetic quantum numbers  

 

The electron energy in a hydrogen atom depends only on the main quantum 

number n. But Schrödinger's equation shows that own functions (defining a 

condition of an electron) contain three integer parameters: mn ,,? . All quantum 

numbers are defined from function properties y. 

Orbital (or azimuthal) quantum number ? defines the impulse moment L  of 

an electron (classical analogue is physical quantity [ ]u
CCC

rmL= , playing an important 

role in studying particle movement in the field of central forces). 

 

    ( )>?? Ö+= 1/L .     (8.9) 

 

At a given quantum number n  the number ? can accept values 

( )1...2,1,0 -= n? .  

Impulse moment L has specific properties in quantum mechanics: impulse 

moment value L  and only one of its projections can be given at once (for 

example, zL ), two other projections are not defined (a ratio of Heisenberg’s 

uncertainties).  

Magnetic quantum number m  defines a projection zL  of an impulse orbital 

moment in the direction marked out  in space (for example, let’s mark out axis Z  

creating a magnetic  field along it) 

 

 >mLz = .      (8.10) 

 

At given value ? it can have values ?°°°= ,...2 ,1 ,0m . 
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Integer (in units >) projections of an impulse moment can be interpreted as 

quantization of impulse moment orientation  relation to the direction marked out in 

space (Figure 8.3). 
 

 

 

 

 

 

 

 

Thus, in Schrödinger's theory the electron state in a hydrogen atom is defined 

by three quantum numbers mn ,,? . Each one value nW  (except 1W ) has some own 

functions differing on values of the orbital ? and magnetic m  quantum numbers. It 

means that a hydrogen atom can have the same energy value being in several 

various states. The states of first two power levels are given in table 8.1. 

States with identical energy are called degenerate, and the number of various 

states with a value of energy is called a multiplicity of degeneration of an 

appropriate power level. It is easy to calculate a degeneration multyplicity, 

proceeding from possible values for ? and m :    

                                                   ( )ä
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8.3 Electron spin 

 

Spin is significantly quantum value, it doesn't have a classical analogue. Spin 

is an internal property of a quantum particle characterizing it equally with a mass 

or a charge. An electron spin is a quantum and  relativistic property at the same 

time.  

The module of  its own moment of an electron impulse  is determined by spin 

quantum number s , equal to 1/2. 

 

   ( ) ( )( ) ( ) 32/12/32/11 >>> =Ö=+= SSLS .              (8.12) 

 

An important difference of the spin from the orbital moment is conservation 

of a spin absolute value, it can change only its projection.  SZL   in a given direction: 

 

   >SSZ mL = , 2/1°=°= smS .   (8.13) 

Table 8.1 
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9 Lecture ˉ9. Quantum statistics and their application 

 

Lecture content: elements of modern physics of atoms and molecules  are 

briefly described in the lecture. 

Lecture objective: to study quantum statistics, Pauli's principle. 

 

9.1 Indiscernibility of identical quantum particles. Pauli's principle 

 

According to the quantum theory all micro particles are divided into two 

classes  corresponding  to two quantum statistics: 

- particles with half-integer spin are called fermions and they correspond to 

Fermi-Dirac's statistics; 

- particles with the whole spin are called bosons and conformed to Bose-

Einstein's statistics. 

Both quantum statistics under certain conditions transfer into Boltzmann's 

classical statistics being an approximate limit case.  

The admissible microstates of particles are considered equiprobable in all 

three statistics. The difference of these statistics is determined by ways of definition 

of microstates and statistical scales. The movement of a separate particle is possible 

to track in a system, because even identical particles are fundamentally different 

distinguishable in classical statistics. There is a principle of identity 

(indiscernibility) of identical particles in the quantum theory of particles systems: 

all identical particles forming this quantum-mechanical system are identical 

(completely indiscernible). The physical nature of difference of two quantum 

statistics follows from this principle: there are two types of wave y- functions 

describing the state of identical particles – symmetric and antisymmetric. 

The type of symmetry of wave function is a property of particles themselves 

and depends neither on interaction between them, nor on existence of external 

fields. Their spin is a criterion that differs types of particles.  

Fermions have an important feature. Particles of this type correspond to 

Paulie's principle: there is not more than one fermion in the same state in any 

quantum-mechanical system of identical fermions. 

While there is any number of particles in each quantum state according to 

Bose-Einstein’s statistics. 

Differences of the statistics explain figure 9.1 where the placement of two 

identical particles is shown in two quantum states (squars). 

It is seen that there are four microstates in Boltzmann's statistics, but the 

probability of each of them is equal to 1/4. In both quantum statistics the first two 

states are indiscernible in the same state.  Moreover the last two states are 

impossible (Paulie's principle) in Fermi-Dirac's statistics. There is only one 

microstate which probability of implementation is equal to 1. 
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Figure 9.1 

 

9.2 Quantum distributions 

 

The main objective of quantum statistics is finding functions of particles 

distribution corresponding to these or those parameters (for example, on energy), 

and also determining average values of these parameters characterizing the most 

probable condition of the whole system of particles. Let's consider quantum 

distributions of particles on energy W . These distributions represent functions ()Wf  

defining average numbers of particles in the same state with energy W , 

for fermions  
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;               (9.1) 

 

for bosons 
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where m  is called a chemical potential (some typical energy, which value  is 

possible to find from a definite condition.  The total number of particles is equal to 

full number  N   of macro system of particles in all states). 

Features of these distributions are: 

– value of  function ()Wf  for fermions cannot be more than one unit, and for 

bosons  it can be any; 

–  value  m  for bosons cannot be positive in (9.2); 

– the formula turns into Boltzmann's distribution if ()1ààWf  because we can  

neglect one unit in   denominators of  both distributions and the distribution is 

expressed: 
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where A  ï normalizing coefficient. It is called parameter of extinct. In this 

case we can tell about coincidence of formulas, but not about change of behavior of 

particles (fermions remain fermions, and bosons will be bosons). 

 

9.3 Fermi-Dirac's distribution for electrons in metal 

 

In the classical electronic theory many properties of metals are explained by 

means of a free electrons model. In the quantum theory  free electrons can be 

considered as an ideal gas containing fermions in a rectangular potential pit. The 

energy spectrum of electrons is discrete, but energy levels are located so densely 

that it can be considered quasicontinuous. 

9.3.1 Let's consider behavior of electronic gas at temperature ʂʊ 0= . In this 

case () 1=Wf , if m¢W    and  () 0=Wf , if mðW . 

 

 

 

 

 

 

 

 

 

 

Figure 9.2                                                  Figure 9.3 

 

The function graph  f(W)  is shown by a continuous line. We can see that all 

states with energy màW  are filled, but the states with mðW  are unoccupied. In this 

case value m is called energy or Fermiôs level m=FW . This is a maximum value of 

free electrons energy in metal at KT 0=  
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where m  is mass of an electron; 

en  is the concentration of electrons in metal. 

The evaluation of value FW  gives value ≈ 5 eV. Average value of energy of 

free electrons according to the corresponding calculation is equal to: 
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3
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Such average energy could correspond to temperature T ~ K4105Ö  for a 

classical gas. This temperature exceeds in many times the melting temperature of 

any metal. The speed of electrons being at the level of Fermi is about  sm/106 . 

Such a state of an electronic gas (a continuous curve on graphic ()Wf  (Figure 

9.2) is called completely degenerated. Distribution of particles on energy differs a 

lot from classical theory, it is only a quantum effect. 

9.3.2 At 0ðT  Fermi-Dirac's distribution is blurred  away a little bit in the 

vicinity of Fermi's level (a dotted curve on function graph ()Wf ) owing to the 

interaction of free electrons with thermal movement of atoms. The area of blurring  

has an energy  order  of  the thermal movement  kT. Therefore, only those electrons 

which are at the highest levels close to Fermi's level (owing to the thermal 

movement) can change the energy. This fact explains the difficulties of the classical 

theory in the explanation of lack of an electronic component of thermal capacity of 

metals. 

The electronic gas is in a potential pit, therefore distribution of electrons can 

be presented as follows (Figure 9.3), where U - depth of a potential pit. The 

energetic levels occupied with free electrons are tinted.  Energy FW   is Fermi's level, 

the amount of work of an electron exit from a metal is designated by arrows. 

As seen in figure 9.3 the work of electron exit ɸ ( the smallest energy which 

should be given to an electron for its removal  from a metal) should be  counted not 

from the bottom of a potential pit as it is done in the classical theory, but from the 

electron top of the power levels occupied by electrons. 

Fermi's energy depends on temperature a little bit, therefore the work of 

electron exit will  also depend on temperature. Kinetic energy of electrons is usually 

counted from the bottom of a potential pit. 

9.3.3 The quantum theory of conductivity of metals leads to the Ohm's law, it 

is similar to formula which was received in the classical electronic theory  

 

     Ej
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Formula for conductivity is expressed: 
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Electrons speed 0u  (corresponding to its value at the top of an occupied 

energy level) is in the denominator instead of average thermal speed u . This speed 

does not practically depend on metal temperature. Value l– average distance, 

which can be passed by a wave without dispersion on the knots of a crystal lattice. It 

can make hundreds of periods of a lattice. The dispersion of electronic waves grows 

with temperature increasing on thermal oscillations of a lattice and therefore ()ml   

decreases. It is the average length of free run of an electron having Fermi's energy. 

A 
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At the usual room temperature, the value  l  is inversely proportional to the first 

degree of temperature. It results in experimental data: g~ T/1 . Therefore, it was 

succeeded in eliminating one more difficulty in the classical theory, according to 

which g~( )2/1
/1 T .  

The density of electronic gas is so great ( )32928 1010 --= mn  in metals, that the 

gas is in extinct state even at usual temperatures. 

 

10 Lecture ˉ10. Zonal theory of solid bodies 

 

Lecture content: elements of physics of a solid body are briefly described in 

this lecture. 

Lecture objectives: 

- to study structure of semiconductors, distribution of electrons on levels; 

- to consider types of  energy levels and the principle of action of p-n 

transition. 

 

10.1 Zonal structure of an energy spectrum of electrons in crystals 

 

All variety of solid bodies properties is caused by existence of two 

subsystems: electrons and atomic nuclei forming a solid body.  

 The quantum model of free electrons in metal (zero approach) explains well 

metal conductivity and many other properties of a metal, but it does not answer the 

question «why do not all solids have similar properties?» 

 The strict approach considers that electrons move in a periodic field of a 

crystal lattice (in the field with periodically changing potential). This leads to the 

fact that the spectrum of possible values of electron energy is split into a series of 

permitted and forbidden zones. 

The origin of energy zones is connected with splitting discrete atomic levels 

owing to interaction of atoms in a crystal lattice: the conformity of electrons with 

Pauli's principle leads to impossibility of identical power states of interacting atoms.  

Each permitted zone consists of N  close located levels the number of which 

is equal to the amount of atoms in a crystal. Energy zones of permitted energy are 

divided by forbidden zones – intervals where energy levels are absent. 

According to Pauli's principle, electrons are located depending on different 

states, consistently filling the permitted power zones, starting with the lowest zone. 

The filled energy levels are shown by toned drawing. 

Thus, the energy spectrum of electrons has zonal structure in crystals. The 

width of zones does not depend on the crystal dimensions. A crystal contains the 

more atoms the closer levels are located   in a zone. The permitted zones have the 

width about several electron-volt. Therefore, if the crystal contains 2310  atoms, the 

distance between levels in a zone is approximately eV2310- . There may be  two 

electrons having opposite directed spins at each energy level. 
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Figure 10.1 

 

10.2 Power zones in metals, dielectrics and semiconductors 

 

Depending on particular atom properties the equilibrium distance between 

atoms supposes the existence of forbidden zone ∆W  or nearby zones that can be 

overlapped (figure 10.2). The forbidden zone is located between permitted zones 

arising from nearby energy atom levels. It depends of the concrete properties of 

atoms. Thus, there are two opportunities for valence electrons of atoms: they fill 

either partially, or up to the end one of the permitted zones. This zone is called 

valence zone. Empty zones are located on the top of it.  

The crystal conductivity depends on the structure of a zonal energy spectrum 

of electrons in a crystal and on filling this spectrum with electrons at temperature 

0=ʊ . This defines whether a crystal belongs to metals, dielectrics or 

semiconductors. 

Electrons in the filled zones fully or partially have different properties. If the 

zone is partially filled with electrons, even weak electric field will transfer electrons 

to unoccupied states within the same zone. Average speed of the movement of 

electrons will become greater than zero and an electric current will appear in a 

crystal. Therefore any partially filled energy zone is a zone of conductivity. 

 

                   
 

Figure 10.2 
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 If  the valence zone is completely filled at 0=ʊ  (is not a conductivity zone), 

the crystal will be an insulator or a semiconductor.  Heating of such a crystal leads 

to that a part of electrons of a valence zone passes into the nearby empty zone 

because of thermal fluctuations . As a result both zones become conductive zones. If 

a width of forbidden zone WD  is about several electron-volt, a number of 

conductive electrons is insignificant. Therefore, crystals with such width of the 

forbidden zone are dielectrics. If the crystal has width of forbidden zone  eVW 1¢D , 

at 0ðT  it is a semiconductor.  

 

10.3 Conductivity of semiconductors 

 

A semiconductor qualitatively differs from a metal in that a semiconductor 

has two sorts of current carriers. First, there are electrons passed from a valent zone 

into a free zone of the semiconductor, and second, these "holes" in a valent zone are 

free states at its top levels. Movement of "holes" is not a motion of a real particle, 

but it is the fact that its movement reflects the character of the movement of all set 

of electrons in top levels of a valence zone. 

Moreover, there are two types of conductivity in semiconductors:  own 

conductivity (it is typical for pure semiconductors) and impure one (it appears when 

in a pure semiconductor some atoms are replaced by impure atoms with a valence 

bigger or smaller by on a unit).  

Distribution of electrons in free and valence zones is described by Fermi-

Dirac's function. Calculation shows that Fermi's level is located in the middle of the 

forbidden zone, and levels of a free zone (with the electrons which passed there) are 

on the "tail" of distribution ()Wf . It means that 2/WWW F Dº- . Regarding the last 

ratio and that kTWððD , the probability of filling levels in a free zone (i.e. formula 

9.1) can be written: 

 

                   () kTWeWf 2/D-º .     (10.1) 

 

The number of the electrons which passed into a free zone and number of the 

formed holes are proportional to ()Wf . These electrons and holes are the current 

carriers; the free zone is a zone of electrons conductivity, and valence zone is a zone 

of holes conductivity. 

As conductivity s is proportional to concentration of carriers, own 

conductivity of the semiconductor is: 

 

    kT

W

e 2
0

D
-

=ss ,     (10.2) 

 

where constº0s .  

As seen from (10.2) own conductivity of a semiconductor grows quickly with 

the increase of temperature. We know that own conductivity of metal decreases 
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with the increase of temperature according classical electrodynamics. Thus 

temperature dependences of a semiconductor and a metal are opposite to each other.  

Own conductivity of a semiconductor is very small because the width of  

forbidden zone WD  considerably exceeds thermal energy kT . 

Conductivity of a semiconductor can be considerably increased (in hundreds 

of times and more) by introduction of a small amount of additives (about 410- %). 

Additional levels arise in the forbidden zone depending on impurity valence. They 

are located close the bottom of a free zone (donor) or to the ceiling of a valence 

zone (acceptor). It helps to increase significantly the conductivity of the 

semiconductor. 

Semiconductors with impurity conductivity are widely used in modern 

electronics.
 

 

11 Lecture ˉ11. Nuclear physics 

 

Lectureôs content: elements of physics of an atomic nucleus and elementary 

particles  are briefly described in this lecture. 

 Lecture objective: to study structure of matter. 

 

The structure of substance is investigated in nuclear physics where 

characteristic dimensions of matter are not only negligible in comparison with 

macroscopic distances, but they are very small in comparison with atom. The scale 

of various distances of nuclear physics is given in logarithmic scale in figure 11.1.  

Time periods up to 910- s are directly measured in modern nuclear physics. 

However, much smaller intervals, up to 2422 1010 -- · s, are indirectly measured by 

means of uncertainty relations “energy-time”.  

 

 
 

Figure 11.1 

 

11.1 Structure and characteristics of an atomic nucleus 

 

The nucleus represents a system of particles - nucleons, which interact very 

strongly. They are hold together by nuclear attractive forces and move with 

nonrelativistic speeds inside a nucleus. A nucleon is a general name of particles 

forming a nucleus – protons and neutrons.  Main characteristics of these particles 

are given in table 11.1. 
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Table  11.1 – Characteristics of nucleons 

Particle (designation) 

 

Physical quantity 

Proton ()p  Neutron ()n  

Mass, kg 

Mass, MeV 

2710672648,1 -Ö  

28,938  

2710674954,1 -Ö  

57,939  

Electric charge e+  0 

Magnetic moment Nm79,2+  Nm913,1-  

Spin 1/2 1/2 

ʊJcmʝ pN /10505,02/ 26-Ö==>m  - the nuclear magneton – unit of magnetic 

moments of nucleons 

 

A neutron in a free state is unstable and spontaneously breaks up; it turns into 

a proton emitting an electron and an antineutrino. 

Proton in a free state is a stable particle. Inside  a nucleus a proton can turn 

into a neutron emitting out a positron and a neutrino. 

The proximity of many properties of a proton and neutron allows to consider 

them as two conditions of one particle ï a nucleon. 

The main characteristics of stable nucleus are the charge, mass, binding 

energy, radius, energy spectrum of states. 

Radioactive (unstable) nuclei are characterized by a number of additional 

parameters: time of life (half-life period), type of radioactive transformations, 

energy spectrum of emitting particles, etc. 

Charging number Z  coincides with the number of protons in a nucleus and 

defines the nucleus charge equal to Ze+ . 

Mass number A  defines total quantity of nucleons in a nucleus, as well as the 

number of neutrons ZAN -= . 

The considered characteristics of a nucleus are expressed in symbolical 

designation XA

Z .  

Sizes of nuclei. Forms and sizes of nuclei are conditional enough because the 

behavior of particles forming a nucleus is conformed to quantum laws. It is possible 

to speak about average distribution of density of nuclear substance, and there are 

experimental methods to measure it.  

In the first approximation a nucleus can be considered as a sphere, which 

radius is 

 

   3/1

0Arr = ,      (11.1) 

 

where ( ) mr 15

0 103,12,1 -Ö·= . 

As seen in from (11.1) nucleus mass is proportional to its volume. Therefore, 

substance density in all nuclei is approximately identical and approximately equals 
317 /10 mkgN ºr . 



51 
 

A nucleus spin ( full mechanical moment) consists of impulse moments of  

protons and neutrons being parts of nucleus. 

 

11.2  Mass and binding energy of a nucleus 

 

Exact measurements of masses showed that the nucleus mass Nm  is always 

less than a sum of nucleons mass within a nucleus 

 

   ( ) mmZAZmm npN D--+= .    (11.2) 

 

Difference mD  between the sum of nucleons mass and mass of a nucleus is 

called the mass defect and characterizes the binding energy of nucleons in a nucleus. 

It is the minimum energy bW , which should be spent to split the nucleus into parts. It 

is obviously that bW  is one of the main characteristics of nucleus strength. Knowing 

binding energy of a nucleus it is possible to calculate an energy exit for any 

processes of disintegrations and mutual transformations of nuclei 

 

                     ( )[ ]{ }Nnpb mmZAZmccmW --+=ÖD= 22 .               (11.3) 

 

For practical calculations it is more convenient to use a formula  

 

           ( )[ ]{ }anHb mmZAZmcW --+= 2 ,       (11.4) 

 

where am  – mass of an atom; 

ʅm  – mass of a hydrogen atom. 

The relation of binding energy bW  to full number of nucleons in a nucleus ɸ  

is called specific binding energy (or binding energy on for one nucleon). The 

analysis of dependence of specific binding energy on mass number (figure 11.2) for 

stable nuclei gives interesting information about properties of nuclei and   about  a 

character of nuclei forces. 

 

                        
 

Figure 11.2 
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 The graphs in (figure 11.2)  shows  that: the nuclear attractive forces are 

short-range  - about the size of a nucleon; nucleons in a nucleus  are connected most 

strongly with values of mass number from 50 to 60 ( binding energy for these nuclei 

is 8,7 MeV/nucleon), synthesis of light nuclei and division of heavy ones  are 

energetically favorable ones. 

Process of nuclear fission of uranium or plutonium under the influence of 

neutrons  is the base of nuclear reactor operation as well as a usual atomic bomb. 

Process of synthesis of light nuclei can be realized only at very high 

temperatures (thermonuclear reaction). It proceeds in a subsoil of the Sun and stars.  

Uncontrolled thermonuclear reactions as explosions of hydrogen bombs were 

realized in 1952 in USA and in Russia in 1953.  Now scientists work hard on 

finding controlled thermonuclear synthesis. 

 

11.3. Nuclear forces 

 

Huge binding energy of nucleons in a nucleus indicates that there is very 

intensive interaction holding nucleons at very small distances from each other 

despite strong Coulomb pushing away. Nuclear interaction between nucleons is 

called strong interaction. It can be described by means of a field of nuclear forces. 

They have distinctive  features. 

Short-acting. Radius of action of nuclear forces is an order ~ 10
–15

 m. 

Charging independence of nuclear forces. Strong interaction does not depend 

on a charge of nucleons.  

Dependence on mutual orientation of nucleons spins. For example, a nucleus 

of heavy hydrogen (deuteron) is formed of a proton and a neutron only if their spins 

are parallel. 

Nuclear forces are not central. They are not directed along the straight line 

connecting the centers of the interacting nucleons. 

Nuclear forces have a property of saturation. Each nucleon in a nucleus 

interacts with limited number of other nucleons.  

Nuclear forces depend on the speed of relative movement of nucleons. 

Exchange character of nuclear forces. Nucleons virtually exchange particles 

which are named pi- mesons ()p. They are called pions. 

There are two charging conditions of a pions with a positive and negative 

charge ʝ° , and one condition is electrically neutral. These particles are unstable and 

they don't have a spin. Main properties of pions are given in appendix 17. 

 

11.4 Radioactive processes 

 

11.4.1 a– disintegration. 

Radioactive transformation with emission of α– particles is described by the 

equation: 

  HeYX A

Z

A

Z

4

2

4

2 +­ -

- .     (11.5) 
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The a– particle is a helium atomic nucleus and is designated He4

2 . Owing to 

emission a– particles the charge of a maternal nucleus X   decreases on 2 units and 

mass number – on 4 units. 

Energy of a– particles emitting by radioactive material is strictly particular 

(a discrete power range). In most cases radioactive material emits some groups of 
a– particles of a various energy. The scheme explaining appearance of a– particles 

of various groups is given  in figure 11.3. The dotted line shows possible transitions 

with emission g– quantum. 

Energy of a– particles of various 

radioactive sources has values from 4 to   

9 MеV. Passing through substance a– 

particles lose the energy owing to 

ionization of substance molecules and 

eventually they stop. Distance, passed by 

a a– particle in substance to a full stop, 

is called the run of a– particles. For the 

majority the a– particles the run in air is 

several centimeters.                      

                                

11.5 ɓ ï disintegration 

 

There are three types ofb– disintegration. In one case the nucleus emits an 

electron, in another – a positron, the third case is called electronic capture ( -ʝ  or 

K– capture), when the nucleus absorbs one of electrons of K– cover. Let's 

introduce symbolical designation for an electron e0

1-  (the charge is equal to 1, mass 

number is 0), for a positron – e0

1- . There are schemes of b–according to its three 

types respectively:  

 

   n~0

11 ++­ -+ eYX A

Z

A

Z ;     (11.6) 

    

n++­ -- eYX A

Z

A

Z

0

11 ;     (11.7) 

   

n+­+ -- YeX A

Z

A

Z 1

0

1 .     (11.8) 

 

An antineutrino also emitted()n~  with an electron at electronic disintegration; 

as to positron disintegration and e-capture – a neutrino()n is emitted. 

b–disintegration can be followed by gamma radiation. The mechanism of its 

emergence is similar toa– disintegration. 

At -b– disintegration two particles are emitted(an electron and an 

antineutrino) which are not present inside a nucleus. They occur during 

disintegration due to transformation of a neutron into a proton: 

 

Figure 11.3 
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   n~0

1

1

1

1

0 ++­ -epn .     (11.9) 

 

Process of positron disintegration (equation 11.7) occurs with emission of a 

positron and a neutrino: 

    

n++­ enp 0

1

1

0

1

1
.     (11.10) 

 

The third type of b– disintegration, connected with capture an electron by 

nucleus from near to it K– covers, leads to that one proton turns into a neutron: 

 

  n+­+- nep 1

0

0

1

1

1
.     (11.11) 

 

Passing through substance b– particles lose their energy and at a certain 

distance they are completely absorbed. Maximum run of b– particles   in air can 

reach 1 – 3 meters.b– particles possessing large energy can penetrate thin layers of 

light metals. Lead of some millimeters can completely absorb all b– particles. 

  

11.6 Scale of radiation 

 

Gamma radiation (gï radiation) represents short-wave electromagnetic 

radiation with wavelength not more than 1010-
 
m. This radiation is generated while 

nuclei transfer from one excited state into another or in to the main state. In this 

case g– quantum is radiated. Energy spectrum of g– radiations is discrete.  It has 

much bigger penetration than a - and b– particles. Passing g– radiations through 

substance are followed by three main processes: photo-electric absorption, classical 

and Compton's dispersion, formation of electron and positron couples. 
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Appendix 1 

 

Studying a phenomenon of electromagnetic induction it was found that in a 

contour in rest a variable magnetic field occurs an induction current. Action of 

third-party forces is the reason of emergence of the latter. These are not magnetic 

forces since they cannot set the being in rest charges in motion ( 0=u
C

). There are 

forces of an electric field EqF
CC

= . This field is responsible for emergence of EMF of 

induction in a motionless contour when a magnetic field changes in time. Maxwell 

assumed that a conductor is only an indicator of induced electric field. The field acts 

a movement of free electrons in the conductor and detects itself by that, but it exist 

and without a conductor possessing an energy stock. 

Unlike an electrostatic field an induced electric field is unpotential and vortex 

as the work completed in this field when moving a single positive charge over the 

closed contour is equal to induction EMF, but it is not zero, 

 

     e=ñ
V

V ldE
CC

,       

where VE
C

 - intensity of the electric field induced by a variable magnetic field. 

 

Appendix 2 

 

                                               
 

 

 

There are  the graphs I(t): curve 1 shows the decrease of current when a 

circuit is disconnected; curve 2 is the increase of current at its short circuit, so, 

current 
R

I
e
=0  represents the settling current (at ¤­t ). 

The speed of a current change (decreasing or setting) is characterized by 

constant 
R

L
=t ,  it is called  time of relaxation and has the dimension of time. 

 

 

Figure 1.1- The graphs of dependence of current I from time t  
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Appendix 3 

 
 

Figure 1.2  - Circuit of alternating current 

 

Appendix 4 

 

Oscillations are called free oscillations if they occur in the system given to 

itself after being brought out of an equilibrium state. 

Oscillations occurring in any system under the influence of external variable 

influence are called compelled fluctuations. 

Self-oscillations as compelled are induced by impact of an oscillatory system 

of external forces, but time points of implementation of these influences are set by 

the system. The system controls external influence itself. 

At parametrical oscillations periodic change of any parameter of a system 

occurs due to external influence. Oscillations are periodic if values of all physical 

quantities characterizing an oscillatory system and changing at its fluctuations 

repeat in regular intervals. 

 

Appendix 5 

As seen in table 5.1 own cyclic frequency of the oscillator depends on its 

parameters. In table 5.1 value S# is a speed (linear u or angular w) of mechanical 

oscillator and of current I  in an oscillatory contour; S## is an acceleration (linear a  

or angular e) of mechanical oscillator; CU  is a voltage on the condenser. 

Amplitudes of values S# are respectively equal mx0w , maw0 , mq0w , and S##  is mx2
0w  , 

maw
2

0
. Their phases differ; a phase of value S differs from a phase of value S# on 

2/p  (it lags behind), and the phase of value S## from a phase S on p (it advances). 

In case of mathematical and spring pendulums a returning force is equal to 

xmF 2w-= . For a physical pendulum there is a value 
?m

I
L= , called specified length 

of a physical pendulum .  It is the length of such a mathematical pendulum which 

period is equal to the period of this physical pendulum. So, the period of a physical 

pendulum is written as:  

                                                    
g

L
T p2= . 
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Appendix 5 

Table 5.1 

Oscillator 

 

 

 

Characteristics, 

equations of 

fluctuations 

Pendulums Ideal oscillatory contour 

 

mathematical 

 

physical 

 

spring 

 

Main equation of 

a system 

asinmgxm -=##  aa sin?## mgI -=  kxxm -=##  ( ) SIR ejj +-= 21  

dt

dI
L

ʉ

q
R S -=-=-= ejj ;;0 21  

Diff.equation 
0=+ x

l

g
x##  0=+ aa

I

mg?
##  0=+ x

m

k
x##  0

1
=+ q

LC
q##  

Sin (3.1) x  a x  q  

Equation of 

fluctuations 

( )jw += txx m 0cos  ( )jwaa += tm 0cos  ( )jw += txx m 0cos  ( )jw += tqq m 0cos  

( )jw +== t
ʉ

q

ʉ

q
U m
ʉ 0cos  

Cycle.frequency

0w ,  

T period 

?/0 g=w  

gT /2 ?p=  

( ) LgImg //0 == ?w  

( ) gLmgIT /2/2 pp == ?  

mk /0 =w  

kmT /2p=  

LC/10 =w  

LCT p2=  

td

dS
S

 
=#  

( )=+-= jwwu txm 00 sin  

ö
÷

õ
æ
ç

å
++=

2
cos 00

p
jww txm

 

( )=+-= jwawa tm 00 sin#  

ö
÷

õ
æ
ç

å
++=

2
cos 00

p
jwaw tm

 

( )=+-= jwwu txm 00 sin  

ö
÷

õ
æ
ç

å
++=

2
cos 00

p
jww txm

 

( )=+-= jww tqI m 00 sin  

ö
÷

õ
æ
ç

å
++=

2
cos 00

p
jww tqm

 

2

2

 td

Sd
S=##  

( )=+-= jww txa m 0

2

0 cos  

( )pjww ++= txm 0

2

0 cos  

( )=+-= jwawa tm 0

2

0 cos##  

( )pjwaw ++= tm 0

2

0 cos  

( )=+-= jww txa m 0

2

0 cos  

( )pjww ++= txm 0

2

0 cos  
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Appendix 6 

As seen in  (figure 1.3) kinetic energy of a material point ()tWk   changes 

from 0  to 
2

22

0 Amw
, making harmonic oscillations with  frequency 02w  and 

amplitude 22

0
4

1
Amw  at average value equal to  22

0
4

1
Amw . 

Oscillations of potential energy ()tWp
 occur as previous, but with a shift of 

phases is equal top. Total energyWremains constant. 

 

 

Figure 1.3 - graphs of dependence kW , pW  and W  from time t 

 

Appendix 7 

 

Energy of a magnetic field  mW   is equal to  

  

( )[ ]jw 22cos1
4

1

2

1
0

22 +-== tLILIW mm . 

 

Energy of an electric field eW    is equal to 

      

( )[ ]jw 22cos1
4

1

2

1 2
2

++== tLI
ʉ

q
W me . 

 

Appendix 8 

 

Let's consider an oscillation occurring along axis x under the law 

( )00cos jw += tAx . As a basic axis is axis x.  

Harmonic oscillation can be set by means of a vector which length is equal 

to amplitude A of oscillations, and the direction of the vector forms an angle with 

axis x and it is equal to initial phase of oscillation. Vector projection ɸ
C

 on axis x  

is written as:  00 cosjAx =  
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. 

 

 

 

 

 

 

Figure 1.4 - The rotating amplitude vector 

 

If this vector is made to rotate with an angular speed 0w , a projection  of 

vectorɸ
C

 on x axis will make the harmonic oscillation described by equation (2.9)  

ranging from + A to ï A. Cyclic frequency of these fluctuations is equal to angular 

speed of rotation, and initial phase 0j  is equal to angle which is formed by vector 

ɸ
C

 with a basic axis at an initial timepoint.  

 

Appendix 9 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 - Method of vector diagram 

 

Appendix 10 

 

At addition of fluctuations of identical frequency and shift of phases 

pjj k2)( 0102 °=- ( )...2,1,0=k  the resulting amplitude is equal to 21 ɸɸɸ += . 

Oscillations are in one phase (sinphase). If the shift of phases ( ) ( )pjj 120102 +°=- k   

and 21 AAA -=  oscillations are in an antiphase. In both cases amplitude of the 

resulting fluctuation does not change over time. Two oscillatory processes are 

called coherent fluctuations if they are conformed in time so, a difference of their 

phases remains constant. 
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Appendix 11 

 

Table 11.1 –Addition of mutually perpendicular periodic motions 

 

Appendix 12 

               

                                
 

 

Figure 1.6 - Vector diagram for a real oscillatory contour 

 

Differentiating expression (2.20)  on t  once again  let’s write down: 

   ( ) ( )pywwyww +-=-= tqtqq mm coscos 2

0

2## .  

Difference of  phases Trajectory equation Graphical representation 

pj m=0  

( ),...2,0°=m  
x

A

B
y=  

 

pj m=0  
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Using the  last formula and expressions  (2.20) and (2.18) it is possible to be 

convinced that t
L

m w
e

cos  is the sum of three harmonic oscillations of the same 

frequency, the phases which are carried out by the shift. The vector diagram of 

addition of these fluctuations is represented in drawing. As seen in the drawing: 

 

( ) 22222

0 4 wbww

e

+-

=

L

q m
m ;  

 

22

0

2

ww

bw
y

-
=tg . 

 

If we consider that 
L

R

2
=b  and 

LC

1
0 =w  the value of charge is 

2

2 1
ö
÷

õ
æ
ç

å
-+

=

C
LR

q m
m

w
ww

e
. 

 

Appendix 13 

 

Resonant frequencies for a charge (voltage on the condenser) and current are 

defined by the following formulas: 

 

     22

0 2bwww -==
resUʩresq

;    

  

     0ww =I .  

      

 
 

Figure 1.7 - Resonant curves for current I and charge q 
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Resonant curves for voltage CU  and current I are given in drawings a)  and 

b). The maximum at a resonance of curves is higher and sharper, the β is less, i.e. 

the active resistance is less. Unlike resonant curves for current at 0­w  the 

resonant curves for voltage CU  converge in point  mC UU = . Value mU  is a voltage 

occurring on the condenser when connected it to a source of constant voltage.  

Amplitude value of current is achieved at 0ww= , amplitude value CU  is 

reached at 0ww¢ . 

 

Appendix 14 

 

Let's mentally allocate small volume VD  where in all points speed of  

movement and deformation of a medium can be considered identical and equal 

respectively to 
tµ

µx
 and 

xµ

µx
. The allocated volume possesses kinetic energy 

 

   V
tt

m
Wk Dö

÷

õ
æ
ç

å

µ

µ
=ö

÷

õ
æ
ç

å

µ

µD
=D

22

22

xrx
, 

 

where Vm DÖ=D r  is the mass of substance in volume VD , 

( )kxtA
t

--=
µ

µ
ww

x
sin  is the speed of a point. 

The potential energy in this case is equal to: 

 

V
E

Wp D
e

=D
2

2

, 

 

where E  - Jung's module; 

xµ

µ
=
x

e  - relative lengthening or compression. 

Considering that the speed of  longitudinal waves is equal to ru /E= , the 

relative compression is: ( )kxtkA
x

-=
µ

µ
w

x
sin . 

 

Appendix 15 

 

For explanation of Compton is effect we will consider elastic collision of a 

x-ray photon with a quasi free electron in rest (binding energy of an electron in 

atom is much less than energy that a photon can transfer to an electron). 

Let's write down conservation laws of energy and an impulse: 

 

   2

0

22

0 cmpccm ++¡=+ ww >> ;                   (15.1) 
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                                         'kpk
C
>

CC
> += ,                                                    (15.2) 

 

where w>  and w¡> – energy of a x-ray photon before collision respectively; 

 2

0cm – energy of an electron before collision; 

 2

0

2 cmpc + - energy of an electron after collision; 

 ʨ
C
–  an electron impulse  after collision; 

Expressions k
C
>  and  k

C
>¡ are a photon impulse before and after collisions 

respectively. 

The vector diagram of equation 1 is given in drawing. 

 

 

 

 

 

 

 

 

Figure 1.8 - Vector diagram 

 

By means of this diagram we will pass to a scalar type of equation (15.2) 

and, solving it together with equation (15.1), we will receive: 

 

                                   
() ( )q-

p
=l-ql¡ cos1

2

0cm

>
,                                          (15.3) 

 

where value  
Cm

cm
l=Ö=

p -12

0

10426,2
2 >

 is Compton’s length.    

Formula (15.3) is coordinated perfectly with experimental results of 

Compton. It proves correctness of ideas of corpuscular properties of 

electromagnetic radiation. 

 

Appendix 16 

 

The tunnel effect is passing of microparticles through space areas forbidden 

by classical physic laws. Let a particle fly on an elementary rectangular potential 

barrier from the left side (figure 1.9). If total energy of particle W  is less than the 

height of a potential barrier 0U  in point 1x , it will be reflected , i.e. it will turn back. 

There is another situation in quantum mechanics.  From particle of Schrödinger's 

equation follows that there is a probability of passing different of zero,  into area 

1  xxð . We have the falling and reflected waves from the left side of the barrier, and 

there is only a passing wave from the right side of the barrier. Into the barrier y- 

function has not a wave character therefore the probability decreases almost 

exponentially. 
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Figure 1.9 - Passing of microparticles through space areas forbidden by laws 

of classical physics 

 

Tunnel effect is a specifically quantum phenomenon. Cold electron’s 

emission from metals, alpha- decay, spontaneous division of nuclei are  explained 

by this effect. 

A type of potential energy of a quantum harmonious oscillator is  the same 

as classical one. If the movement of a particle with  mass m  and frequency of 

oscillations w  occurs on axis x:   

                                            
()

2

22xm
xU

w
= .  

   

The solution of Schrödinger’s equation for a quantum oscillator is a complex 

mathematical problem. Let's consider only a power range of the quantum 

harmonious oscillator: 
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where ...2,1,0=n – any whole positive number. 

 

 

 

 

 

 

 

 

Figure 1.10 – "A potential pit" 

 

From the last formula it follows that the power range of the oscillator is 

discrete and limited below by energy of value 2/0 w>=W . It is the main level of the 
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quantum oscillator. Intervals  w>=W  between the next levels do not depend on 

quantum number n , i.e. they are identical (figure 1.10).  

As the main level 0  0ðW  the quantum oscillator cannot be stopped. For 

example, because of it fluctuations of atoms in crystal lattices do not stop even at 

the temperature of absolute zero. Quantum fluctuations with the minimum energy 

are called zero oscillations. 

The concept about the quantum oscillator plays an important role in physics 

of those phenomena that is caused by fluctuations of microscopic particles. 

 

Appendix 17 

 

Table 17.1 – Characteristics of pions 

Designation of a 

pion 

Mass, MeV Electric charge, е Lifetime, s 

°p  140 1°  810  
0p  135 0 1610-  

  

Let's consider the interaction between nucleons. A nucleon can emit a pion if 

its energy has uncertainty no less, than 2cmp . In this case violation of the law of 

energy conservation cannot be found. According to a ratio of uncertainty “energy- 

time”  the emitted pion can exist during time  2/ cmpt >= , then it is absorbed by the 

same nucleon, or another, being nearby the first one. 

Let's emphasize that the exchange of particles is the cornerstone of all 

interactions and the fundamental quantum property of the nature. Particles,  which 

emission and absorption happen with the seeming violation of energy conservation 

law, are called virtual. 

As a result of virtual processes ++ª pnp , -+ª ppn , 0p+ª pp , 
0p+ª nn  a single nucleon is surrounded by virtual  p- mezon cloud (a mezon fur 

coat) forming a field of nuclear forces.  

At approaching of two nucleons before contact of their mezon fur coats the 

conditions for an exchange of pions are created. Thus, the mechanism of strong 

interaction between nucleons consists that nucleons, exchanging among themselves 

virtual pions, keep each other. Strong interaction can happen according to several 

schemes, for example pnnnnp +ª++ª+ +p , nppppn +ª++ª+ -p , 

nnnnnn +ª++ª+ 0p . 

Exchange character of nuclear forces allows to explain existence of the 

magnetic moment of a neutron. The neutron spends a part of  life time in a virtual 

state ( )-+pp . Orbital movement of -p– mezon also leads to emergence of the 

observed negative magnetic moment of a neutron. 

Let's note that the satisfactory quantitative theory of interaction of nucleons 

by means of exchange of pions is not created. There were serious mathematical 

difficulties at its development. The main reason is that nuclear forces are very 

powerful. 
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