Некоммерческое акционерное общество

АЛМАТИНСКИЙ ИНСТИТУТ ЭНЕРГЕТИКИ И СВЯЗИ

  

Кафедра Иностранные языки

 

 

 АНГЛИЙСКИЙ ЯЗЫК

ТЕХНИЧЕСКИЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

Методические указания

для магистрантов специальности 050717 - Теплоэнергетика

 

  

Алматы 2007

СОСТАВИТЕЛЬ:  Садыкова А.К. Английский язык. Технические тексты для перевода. Методические указания для магистрантов специальности 050717 - Теплоэнергетика – Алматы. - АИЭС, 2007. – 54с

  

Основное назначение данного методического указания – способствовать выработке умений анализировать и обобщать полученную информацию, а также правильно переводить английскую и американскую научно-техническую литературу. Все тексты, использованные в данном методическом указании  аутентичные, имеют  профессиональный характер,  не подвергались никакой адаптации и отражают современный уровень достижений в области энергетики.  

  

Рецензент: ст. преподаватель С.Б. Бухина.

  

Печатается по плану издания некоммерческого акционерного общества «Алматинский институт энергетики и связи» на 2007 г.

 

© НАО «Алматинский институт энергетики и связи», 2007 г.

 

Before doing writing tasks read thESE to help you 

Writing an opinion piece

 

Ø Start by listing ideas for and against your topic.

Ø It is important to have a strong introductory paragraph to start your opinion piece. You can start by presenting the opposite point of view to your own.

Ø Organize what you want to say into main topic areas and have a paragraph for each topic. Start each new paragraph with a sentence that introduces the main topic of the paragraph.

Ø You can personalize the argument by using real life examples, or your own experience to support your argument.

Ø Make sure you bring the argument to a conclusion and finish your opinion piece with a summary of your opinions.

 

Writing a report

 

Ø Give your report a suitable title.

Ø Start with an introductory paragraph in which you tell the reader what your report is about.

Ø Make sure the layout of your report is clear. Divide the information in your report into paragraphs and give each paragraph a suitable subheading. These should help the reader understand the information in the paragraph.

Ø Make sure your style is informative and factual. Don't be informal. When writing the report you should try to explain how you got some of your information.

Ø Use the information in the report to come to a conclusion about the subject in the final paragraph. Try not to show strong personal opinion.

 

Writing an article 

Ø Read the question carefully. Make sure you understand what is being asked for.

Ø Think about who you are writing for. What age are they? What interests do they have?

Ø Think about how you can make your article interesting and different. Search for some additional sources and materials.

Ø Plan your article before you begin writing.

Ø Organize your article into paragraphs, each with a clear topic.

Ø Use a good range of grammar and vocabulary. Use appropriate punctuation.

  

Writing an essay

Any essay should contain an introduction, a body of several paragraphs, and a conclusion. Each of these parts has a specific function:

The introduction usually begins generally and then moves to more specific details. It should contain your ‘thesis statement’ or ‘claim’, an expression of intent or promise to the reader that states your main idea and sets up an expectation of what the reader will find in the essay. You should state clearly what your position is on the topic of the essay. The introduction may also outline the key points of each of the paragraphs that follow in the body of the essay.

The body is a series of paragraphs that build your argument. Each new idea should have its own paragraph. Paragraphs often begin with a topic sentence that states the main idea of the paragraph. It needs to be supported by evidence and explanation, and followed by a comment or a link to the next paragraph.

The conclusion should summarize your main ideas and restate the thesis statement. It should not contain new ideas as this is not the place to develop your argument further.

 Unit 1

Text 1 Nuclear Waste and the Distant Future

Do the following tasks: 

1. Read the text and find the sentences where the following items are used. Translate them.

radioactive material generated by nuclear energy, developing an effective risk policy for nuclear power and radioactive waste, disposal of both long-lived hazardous non-radioactive materials, nuclear fission extracts large quantities of energy, a modest fraction of radioactivity comes from fission products, interim storage of spent fuel in surface facilities

2. Find and write down all the abbreviations from the text. Say, which of them are new for you and which are already known. Translate into Kazakh/Russian the sentences where the abbreviations are used.

 Nuclear waste and the distant future 

Regulation of nuclear hazards must be consistent with rules governing other hazardous materials and must balance its risks against those linked to other energy sources. Although most of the radioactive material generated by nuclear energy decays away over short times ranging from minutes to several decades, a small fraction remains radioactive for far longer time periods. Polio/makers, responding to public concern about the potential long-term hazards of these materials, have established unique requirements for managing nuclear materials risks that differ greatly from those for chemical hazards. Although it is difficult to argue against any effort to protect public safety, risk management will be most effective when each risk is evaluated in the context of other risks and balanced against the benefits produced by the regulated activity. Applying extremely stringent standards to one type of risk while other risks are regulated at a lower standard does not improve overall public safety. Similarly, foregoing a socially and economically valuable activity in order to limit relatively small future risk is not a sensible tradeoff. Therefore, developing an effective risk policy for nuclear power and radioactive waste requires looking at how the government regulates all hazardous waste and at the relative health and environmental effects of nuclear power as compared with those of other energy sources.

A key regulatory decision for the future of nuclear power is the safety standard to be applied in the licensing of the radioactive waste depository at Yucca Mountain (YM), Nevada. In 1992, Congress passed the Energy Policy Act, directing the Environmental Protection Agency (EPA) to promulgate site-specific standards for the YM nuclear waste repository project. Furthermore, Congress stipulated that these standards be consistent with the findings and recommendations of the 1995 National Research Council report Technical Bases for Yucca Mountain Standards (commonly called the "TYMS report").

The standard that the EPA subsequently established was generally consistent with the TYMS report but differed significantly with respect to the compliance period. The EPA ruled that during its first 10,000 years, the YM repository must ensure that no individual in the adjoining Armagosa Valley would be exposed to more than 15 millirems (mrem) of radiation per year from use of the groundwater. The EPA chose the 10,000-year compliance period because that is the period already being applied to the Waste Isolation Pilot Plant repository in New Mexico and is the longest compliance period for any hazardous waste. However, the TYMS report concluded that there is "no scientific basis for limiting the time period of the individual risk standard to 10,000 years or any other value" and recommended that assessment be performed out to the time of peak risk to a maximally exposed individual, which may be several hundred thousand years in the future. Opponents of the YM project challenged the EPA rules in court. On July 9, 2004, the U.S. Court of Appeals issued a ruling that denied all challenges, except one. The successful challenge, brought by the State of Nevada, argued that the EPA was not in compliance with the Energy Policy Act, because it had deviated from recommendations of the TYMS report by limiting the regulatory compliance time to 10,000 years. Thirteen months later, EPA issued a revised "two-tiered" standard under which maximum exposure beyond 10,000 years will be limited to 350 mrem per year, which is roughly equivalent to the average background exposure for individuals across the globe. No detectable health damage has been associated with this level of exposure.

It should also be noted that in making its recommendation that standards be set for the period beyond 10,000 years, the TYMS report included two important caveats: that the EPA should consider establishing "consistent policies for managing risks from disposal of both long-lived hazardous non-radioactive materials and radioactive materials" and that the ethical principle of intergenerational equity should be considered in the formulation of safety standards.

Here we consider three central questions for the YM standard: What risk does YM pose beyond 10,000 years, how are other long-term risks regulated, and how might such long-term standards affect nearer-term human welfare? We find that the proposed EPA standard for YM does satisfy appropriate long-term safety criteria, and indeed the standard is much more stringent than EPA standards governing other sources of long-term risk. In addition, a risk/benefit analysis of nuclear power indicates that it is a safer choice than the fossil options that now dominate electricity generation.

Nuclear fission extracts large quantities of energy from extremely small masses of fuel. The small quantity of fuel used, as compared to fossil energy alternatives, makes it possible to manage nuclear wastes by isolation as a concentrated, contained solid rather than by release and dilution into the environment as is done with fossil fuels. The vast majority of radioactivity created in nuclear fuels disappears rapidly after reactors shut down, as short-lived radioactive elements (so-called fission products) decay to become stable elements over periods of hours to days. A modest fraction of radioactivity comes from fission products that remain radioactive for decades, and a very small fraction from radioactive isotopes primarily heavy elements such as plutonium created by neutron capture, as well as some of their radioactive decay products that persist for tens to hundreds of millennia.

Nuclear reactor safety focuses on providing multiple containment barriers and reliable cooling to allow for the safe radioactive decay of short-lived fission products after reactor shutdown. Interim storage of spent fuel in surface facilities can then permit further substantial reductions in heat generation from the smaller quantities of fission products that take multiple decades to decay. The remaining inventory of very long-lived isotopes could be further reduced by factors of 40 to 100 by reprocessing spent fuel and recycling it in advanced "burner" reactors. With or without reprocessing, there remains a quantity of residual long-lived radioactive materials that must be stored and isolated from the environment.

A general scientific and technical consensus exists that deep geologic disposal can provide predictable and effective long-term isolation of nuclear wastes. Environments deep underground change extremely slowly with time, particularly when compared to the surface environment, and therefore their past behavior can be studied and extrapolated into the long-term future. The largest challenge for safety assessment for deep geologic isolation comes from predicting how the perturbation created by emplacing nuclear waste will change long-term chemical and hydrogeologic conditions in particular the effect on surrounding rock of the heat generated by the waste over multiple centuries.

In the United States, a protracted and divisive political and technical process resulted in the selection, in 2002, of a national repository site at YM, sitting astride a federally owned area that overlaps the Nevada Test Site, Nellis Air Force Base, and Bureau of Land Management lands in southern Nevada. After a delay to revise its original license application, the U.S. Department of Energy (DOE) has recently announced that it will submit a construction license application for YM to the U.S. Nuclear Regulatory Commission (NRC) in 2008. Under current law, the NRC will have three years to evaluate this application, with a potential one-year extension, to determine whether the DOE repository design meets a safety standard established by the EPA.

Detailed technical review of YM performance will occur during licensing. In the interim, the 1999 Final Environmental Impact Statement (FEIS) provides a preliminary indication of potential long-term performance, assuming the disposal of 63,000 metric tons (MT) of spent fuel and 7,000 MT of defense waste. The peak risk occurs in about 60,000 years, when the waste canisters may become degraded, potentially allowing the radioactive material to be transported down to groundwater and subsequently to the Amargosa Valley. If one considers a worst-case scenario in which future Amargosa Valley residents possess technology for irrigated agriculture but do not employ any basic public health measures to test water quality for natural and human-generated contaminants and do not use the simple mitigative actions that our current public health practice employs, the maximum doses predicted by the FEIS would be of the same order as average natural background radiation, which generates no statistically detectable health effects. For its license application, DOE will implement further changes in repository design and modeling, which may result in somewhat lower long-term dose predictions than those reported in the FEIS.

 Other risks 

A large number of other important human activities also generate wastes that present persistent or permanent hazards. These include mining wastes; coal ash; deep-well injected hazardous liquid waste; and solid wastes such as lead, mercury, cadmium, zinc, beryllium, and chromium that are managed at Resource Conservation and Recovery Act (RCRA) and Superfund sites.

For these wastes, the longest compliance time required by the EPA is 10,000 years for deep-well injection of liquid hazardous wastes. For all forms of shallow land disposal, compliance times are substantially shorter. For RCRA solid waste management facilities, a typical permit is for 30 years, and the operator bears

responsibility over a time horizon of less than a century. RCRA sites cannot reside in a 100-year flood plain unless they are designed to resist washout by a 100-year flood. Although coal and mining wastes pose potential health risks, federal legislation excludes them from the category of hazardous waste.

The short regulatory compliance times for much hazardous waste do not mean that these materials do not pose any potential long-term danger. David Okrent and Leiming Xing at the University of California Los Angeles have analyzed what would happen over the long term at an approved RCRA site for the disposal of arsenic, chromium, nickel, cadmium, and beryllium. Assuming a loss of societal memory and the absence of monitoring or mitigation, individuals in a farming community at the site 1,000 years in the future would face an estimated 30% lifetime probability of cancer due to this exposure.

The reason that most chemical risks are not subject to long-term regulation is not that policymakers are unaware of the danger. Rather, society has made a deliberate decision to place more weight on the analysis of near-term risks as well as the benefits derived from these sources of risk than on very long-term risks. It is also worth noting that some of these risks are not all that long-term. For example, current scientific understanding suggests that the peak risks from 20th- and 21st-century fossil fuel CO2 emissions may occur within several centuries, resulting in major ecosystem alteration, including substantial changes in ocean chemistry and a sea-level rise of up to seven meters.

 Benefits  

The threat of global warming associated with carbon-based energy sources highlights one of the primary advantages of nuclear power: very low greenhouse gas emissions. The health of the global and U.S. economy depends on energy. The 63,000 MT of commercial spent fuel that would be stored at YM will result from the generation of 2,200 gigawatt years of electricity, worth $1 trillion, which in turn will support many additional trillions of dollars of economic activity. Although the Nuclear Waste Policy Act currently caps the capacity of YM at 63,000 MT of spent fuel, the actual performance-based capacity of YM is 2.5 to 5 times as large. And if the spent fuel is reprocessed and recycled in burner reactors, the performance-based limit would increase dramatically. YM would have the capacity to store all the waste from the nuclear electricity generation needed to power the country for centuries.

Near-term economic effects also deserve consideration. The government has already spent $8 billion on site selection and characterization for YM. It would cost at least that much to start looking for a new site. Because DOE has defaulted on its legal obligation to begin accepting spent fuel in 1998, storing commercial waste onsite at nuclear power plants now costs taxpayers some $360 million per year. Additional costs for protracted management of military high-level wastes at the Hanford, Savannah River, and Idaho sites will also be borne by taxpayers. Government could certainly find more productive uses for this money.

If nuclear power is not used to generate this baseload electricity, the obvious alternative is coal, which currently generates 54% of U.S. electricity. Indeed, U.S. utilities now have plans to install an additional 62 gigawatts of coal-fired generation. Using coal to produce the same amount of electricity that would be associated with 63,000 MT of spent fuel would require mining and burning 5 billion tons of coal: a full six years of current U.S. coal consumption. This would create 700 million MT of ash and flue-gas desulfurization sludge requiring shallow land disposal, discharge over 650 MT of hazardous mercury, and result in approximately 300 U.S. coal-worker fatalities. And on top of this, coal burning would produce an enormous quantity of carbon dioxide that would contribute to climate change.

In general, life-cycle assessments like those performed by the European ExternE project show that nuclear energy creates far smaller worker safety, public health, and environmental effects than does any form of fossil fuel use.

 A reasonable standard  

Forced for the first time to create a standard that extends beyond 10,000 years, the EPA has made a sensible choice. The TYMS report recommended that the EPA adopt a risk-based standard for YM falling inside the range of annualized risk that the EPA uses in regulating other materials. The TYMS report tabulated annual risk levels permitted by current EPA regulations for other materials, which range from one death in a population of a million to four deaths in a population of 10,000. For radiation doses, this would correspond to a range from 2 mrem per year to 860 mrem per year. The higher level is the current standard for radon in groundwater and indoor air. The TYMS report recommended that the EPA use values from the lower end of this range as a reasonable starting point in setting its standard for YM. The EPA's draft revised standard sets the limit at 15 mrem per year for up to 10,000 years and adopts a post-10,000-year standard of 350 mrem per year. For comparison, places such as Denver, Colorado, and Kerala, India, have background levels as high as 1,000 mrem per year, and we know of no cancer clusters in these areas. Thus, a level of 350 mrem per year would clearly meet the standard of avoiding very long-term "irreversible harm or catastrophic consequences," something that cannot be said for current fossil energy use. If fossil fuels burned today result in global climate change in 50 or 100 years, there will be no way to reverse these effects. If in a few hundred or a few thousand years, future generations decide that the waste buried at YM is too dangerous or that a better way exists to manage it, they can remove it.

The safety standards recommended by the EPA for YM reflect a thoughtful assessment of risk and benefits. Indeed, instead of questioning the adequacy of these standards, policymakers should be focusing on other risks. The United States would be a safer place if this or any very long-term standard were applied uniformly to management of all types of long-lived hazardous waste, for the use of fossil fuels, and for other human activities as well.

 

(By Per F. Peterson; William E. Kastenberg and Michael Corradini

Source: Issues in Science & Technology, Summer2006, p47.)

 

Do the following tasks: 

1. Write down your own opinion on this problem (an opinion piece).

2. Look through the text. What kind of new information did you get about: Nuclear power and radioactive waste?

3. Find some additional material about the influence of nuclear waste on environment and write a report.  

Text 2 Экологические аспекты нефтепереработки на заводах Западного Казахстана 

Do the following tasks: 

1. Divide the text into logical parts and give their summaries in English.

2. Read the text again and find the sentences where the following terms are used. Translate them: месторождение, экология, окружающая среда, отходы, выбросы, нефтеперерабатывающий завод, катализатор, теплообменник, сероочистка, гидравлическое сопротивление, реактор, сепаратор.

3. Make 10 sentences of your own with the terms used in the text. Let your neighbour translate their Kazakh/Russian versions into English, and then change the parts. 

 

Экологические аспекты нефтепереработки на заводах западного казахстана 

Статья является обозрением экологической ситуации, возникшей в связи с интенсивным развитием нефтегазового сектора в Западном Казахстане.

Уменьшение количества выбросов, отрицательно воздействующих на организм человека и другие живые организмы,  в атмосферу на сегодняшний день является актуальной задачей для нефтяников.

Предприятие Тенгиз-Шевроил занимается разработкой супер – гигантского Тенгизского месторождения, характеризующегося аномально высокими температурой и давлением, высоким содержанием серы и ее соединений. Кровля его коллектора залегает на глубине 3810 метров. Размеры коллектора 19,3 километра в ширину и 21 километр в длину. Невероятная мощность нефтеносной толщи достигает 1,6 километров. ТШО также осваивает расположенное по соседству с Тенгизским, Королевское месторождение. Все это обуславливает определенные сложности и особенности в разработке месторождения.

Знание основ экологии дает возможность специалистам ТШО предугадать и оценить характер изменений окружающей среды в результате тех или иных видов деятельности завода.

Очень важна организация необходимых условий для проведений нужных определенных мероприятий для предотвращения экологического вреда.

Основным источником отходов и выбросов нефтеперерабатывающего завода Тенгиз-Шевроил является факельное хозяйство крупного газоперерабатывающего комплекса, на котором сжигается, предварительно пройдя соответствующую очистку от вредных примесей, та небольшая часть попутного газа, которая на данный момент не могла быть переработана в товарные газы и реализована. На серных установках также обрабатываются другие потоки газовых смесей и могут включать отходящие газы отдувочной колонны кислой воды, содержащие NH3, H2S.

Выбор соответствующей конфигурации основывается на содержании сероводорода в кислом газе амина, будет состоять из тепловой стадии, включающую реакционную печь и теплообменник отработанной тепловой энергии "конденсатор", с последующими двумя или тремя катализаторными стадиями, состоящими из вторичных нагревателей, каталитических преобразователей и конденсаторов.

Сырьем установки производства серы (У-400) служит кислый газ, поступающий с установок сероочистки (У-300), который сжигается в определенном соотношении в токе воздуха, подаваемого в печь С-401. Кислый газ состоит из смеси газов и паров воды, ориентировочного состава:

Сероводород                                     до 81,4% моль

Двуокись углерода                            до 12,5% моль

Паров воды                              не более 6% моль

Суммы углеводородов            не более 0,5% моль

Сероуглерод, сероокись углерода в незначительном количестве. Температура кислого газа должна быть не выше 480С. Состав воздуха, подаваемого на сжигание, соответствует составу окружающего атмосферного воздуха.

 В процессе сжигания H2S образуется двуокись серы SО2, участвующей в каталитических реакциях, протекающих на катализаторах, находящихся в реакторах установки.

Физические и химические свойства сероводорода. Химическая формула H2S. Молекулярная масса = 34,08. Бесцветный газ с характерным запахом тухлых яиц. При температуре минус 60,40С сероводород превращается в бесцветную жидкость, кристаллизирующуюся при температуре минус 85,60С. Твердый сероводород существует в трех модификациях с температурами перехода минус 1700С, минус 1470С и минус 85,60С. Плотность газа 1,538г/л (при 250С). Растворимость сероводорода в воде составляет 3об/об (при 200С), при 400С коэффициент растворения = 2,03. Устойчив до 4000С, разлагается полностью при 16900С.

При значительных концентрациях, в присутствии кислорода, сероводород в жидкой фазе окисляется до элементарной серы, а также, взаимодействуя с различными органическими соединениями, образует полисульфиды. Сильный восстановитель. Горит при температуре 2450С.

На первом этапе происходит полное окисление в открытом пламени одной трети всей смеси H2S и СО2. На втором этапе происходит реакция в присутствии катализатора образованной таким образом SО2 с оставшимися двумя третями смеси сероводорода. Чтобы в каталитической стадии процесс протекал при более низких температурах, на промежуточной стадии процесса происходит утилизация тепла из процесса.

Технологический процесс Клауса, представляющий собой сложный процесс, отличается от других установок нефтеперерабатывающего или газового производства тем, что в отличие от очистки и переработки углеводородов он представляет химический процесс.

При эксплуатации установки по извлечению серы большое внимание должно уделяться максимальному уменьшению гидравлического сопротивления установки, что связано с ограниченным давлением, для этого должны быть установлены экономичные воздуходувки, так как  возрастание гидравлического сопротивления связано с закоксованием верхнего слоя катализатора или его разрушением и образованием пыли, а также застыванием серы в трубах концевого конденсатора.

Несмотря на то, что процесс остается тем же, оборудование и конфигурация установки меняется с каждым другим применением.

В последнее время все более популярным становится обогащение воздушного потока кислородом во всех случаях переработки газа, насыщенного H2S менее чем на 50%, что позволяет использовать прямоточный процесс в тех случаях, где первоначально требовалось разделение потока. Диапазоны, отмеченные выше, ни в коем случае не являются жесткими, и другие факторы переработки очень бедных газов; используется нагнетание топливного газа в печь реакционной плавки, однако такая практика, как правило, не рекомендуется……

В целом воздействие завода на окружающую среду оценивается спец. службами Казахстана как незначительное, по сравнению с прошлым.

 (С.К.Абильдинов, И.П.Жапбарова)

 

Do the following tasks: 

1. What other ecological problems besides the ones mentioned in the text are very important now? Discuss with your group.

2. Write down your own opinion on all of these problems (an opinion composition).

3. Give a written translation of the text into English.

4. Make a report about ecological problems and the way of solving them in Kazakhstan.

 

Unit 2

Text 1 Исследование установки ОВЧ-1 в процессах очистки питьевых и сточных вод г. Кызылорды

Do the following tasks: 

1. Read the text. Name the main problems mentioned in it.

2. Read the text again and find the sentences where the following terms are used. Translate them: водоснабжение, водоочистка, подземные воды, стерилизация, озонный слой, бактерицидное действие, обеззараживание, озонирующие установки, минерализация, водозабор.

3. Name the main ways of solving the problems touched upon in the article and translate them into English.  

Исследование установки овч-1  в процессах очистки питьевых и сточных вод  г. Кызылорды 

Проблема обеспечения населения республики питьевой водой в настоящее время является одной из актуальнейших в связи с плохим техническим состоянием существующих систем  водоснабжения, загрязнения водоисточников, ухудшением санитарно-эпидемиологической обстановки и, как следствие, ростом заболеваемости.

Дефицит чистой воды становится проблемой номер один в Казахстане. В ряде городов имеющиеся системы водоснабжения в силу длительного срока эксплуатации, устаревшей технологии водоочистки не обеспечивают подачу воды нормативного качества. Поэтому многие действующие в республике водопроводы не отвечают санитарным требованиям. Из числа действующих по республике не отвечают санитарным нормам – 25,8%, а в Жамбылской области до 89,7%, Павлодарской – 57,1%, в Кызылординской области – 21%, в том числе в Кармакчинском районе 50% питьевой воды не соответствует требованиям ГОСТа, в Казалинском – 70%. Аналогичное положение и в других районах Кызылординской области.

В условиях дефицита чистых подземных вод жители отдельных населенных пунктов Кызылординской области вынуждены использовать для хозяйственных, питьевых нужд воду местных источников из реки Сырдарьи, которая является крупнейшей водной артерией региона. Однако в связи с загрязнением ее в последние 15-20 лет промстоками и сбросными водами с полей орошения, река уже не может рассматриваться как основной источник водоснабжения. Ряд ученых считают, что для этих целей следует использовать подземные воды.

В зависимости от целевого назначения воды ее физические, химические и бактериологические показатели должны отвечать определенным требованиям. Ими определяется выбор источников водоснабжения, технологические процессы обработки воды и компоновка очистных сооружений. Она должна быть безвредна для здоровья человека, иметь  хорошие органолептические показатели и пригодна для хозяйственно-бытовых процессов. Чем богаче воды органическими веществами, тем большее количество микробов содержится в ней. В связи с этим низкое качество питьевой воды является источником инфекционных заболеваний.

В области, как и везде питьевую воду очищают в основном хлорированием, тогда как большинство цивилизованных стран мира уже давно установили специальные ограничения для применения хлора. При хлорировании воды не происходит полной стерилизации, в ней остаются единичные сохраняющие жизнеспособность особи, для уничтожения которых требуются повышенные дозы хлора и длительный контакт, которые, по мнению ученых способны привести к возникновению злокачественных образований в человеческом организме.

По мнению профессора В.И.Смирнова и его коллег, для озонного слоя Земли губительны не только фреоны, но и хлоруглеводороды, которые в больших количествах возникают при хлорировании воды. Результаты исследования привели к выводу, что хлорирование должно уступить озонированию, обладающее высоким технологическим показателем и делает весьма перспективным использование озонирующих установок для очистки питьевых и сточных вод. Использование озона в экологических целях в Казахстане находится на грани становления, хотя учеными Казахстана сделано немало в области разработки аппаратов для обработки озона.

Бактерицидное действие озона связано с его высоким окислительным потенциалом и легкостью его диффузии через клеточные оболочки микробов. Он окисляет органические вещества микробной клетки и приводит к его гибели. Исследованиями установлено, что при содержании в 1 мл исходной воды 274-325 бактерий доза озона в 1 мг/л снижает их число на 86%, а  доза в 2мг/л обеззараживает воду почти полностью. Доза озона, необходимая для обеззараживания воды, зависит от степени загрязнения воды и обычно лежит в пределах 0,5 до 0,4 мг/л. Чем больше мутность воды, тем выше расход озона. Наряду с обеззараживанием озонирование приводит к улучшению вкуса, снижению цветности, уничтожению запахов воды в результате окисления и минерализации органических примесей.

В технике озон получают в озонаторах. Очищенный и сухой воздух, пропускаемый через озонатор под постоянным давлением, подвергается действию тихого разряда. Образующаяся при этом озоно-воздушная смесь смешивается с водой в специальных смесителях. В современных установках для  этого применяют барботирование или смешение в струйных насосах. Автор проводил исследования новых генераторов озона ОКБР-1 и ОВЧ-1 в процессах очистки питьевых и сточных вод г. Кызылорды. Исследования воды на наличие патогенных микроорганизмов проводилось в лабораториях, имеющих разрешение для работы с возбудителями соответствующей группы патогенности и лицензию на выполнение этих работ. Качество воды определялось ее составом и свойствами при поступлении в водопроводную сеть, в точках водозабора наружной и внутренней сети.

Для оценки качества воды,  ее образцы подвергались физико-химическому анализу: температура, запах, вкус, прозрачность, мутность, цветность (физический) и взвешенные вещества, сухой остаток, окисляемость, рН, поверхностно-активные вещества, азотсодержащие вещества, жесткость воды, сероводород, ионы тяжелых металлов (химический). Полный химический анализ позволил получить подробную характеристику воды. После озонирования пробы воды по исследованным ингредиентам дали  положительные результаты.

В настоящее время целесообразность использования озонной технологии уже не вызывает сомнений.

 (З.А.Баймаханова)  

Do the following tasks: 

1. What other problems besides the ones mentioned in the text are of vital importance today for environmental protection.

2. Find some additional material devoted to the problem raised in the text and try to write an article in English.

 

Text 2: No Silver Bullet

Do the following tasks: 

1. Translate the following extracts.

fossil-fuel-burning power plant, to generate electricity by burning petroleum coke, hydrogen produces electricity by driving turbines, carbon sequestration, dominate source of energy, to slash emissions of greenhouse gases, to regulate carbon dioxide emissions, lowering electricity consumption and curbing emissions,  depleted oil patches, electricity-producing wind turbines, integrated starter generator, cellulosic ethanol is made from high-fiber plant materials

2. Read the first part of the text and express its main idea.

3. Find in the text following abbreviations and give their full version: BP, IGCC, AEP, IEA, NRC. Translate the sentences where these abbreviations are used.

4. Read the whole text. Name the main problems mentioned in it. 

No silver bullet 

Nothing will magically halt or reverse global warming, every experts say. So they are calling for a combination of aggressive actions to put the brakes on climate change.

Sometime in early 2008, the British energy giant known as BP will decide whether to build the first fossil-fuel-burning commercial power plant in the United States designed not to contribute to global warming. The California electric facility on BP's drawing board would emit almost no carbon dioxide or other "greenhouse gases." It is one of a handful of state-of-the-art projects raising hopes that the world can satisfy growing energy demands without accelerating the damage being done to the climate.

There is no silver bullet that will magically halt or reverse global warming, energy experts say. In its absence, they call for improving existing technologies and developing new ones that will more cleanly and economically power the refrigerators, computers, cars, and trucks of tomorrow. Energy efficiency, nuclear power, "clean" coal, hybrid vehicles, wind power, biofuels, and carbon dioxide "sequestration" (locking the gas underground) all come up frequently when experts discuss a combination of aggressive steps to put the brakes on climate change.

Some experts see BP's proposed $1 billion power plant as a promising component of this technology-focused approach to ameliorating climate change. The facility, which would be built at the company's Carson oil refinery near Los Angeles, would generate electricity by burning petroleum coke, a bottom-of-the-barrel material left over after oil is refined. Petroleum coke is basically synthetic coal, according to Gardiner Hill, director of technology for BP's carbon dioxide capture-and-storage program.

The power plant would convert the fuel into hydrogen and CO [sub 2]. The hydrogen would produce electricity by driving turbines, and the CO [sub 2] would be injected into an oil well to squeeze hard-to-reach petroleum toward the surface. Once empty, the well would be sealed, forever trapping the CO [sub 2] and keeping it from harming the Earth's atmosphere. Coal-burning power plants could, in theory, use the same process to capture and store their CO [sub 2]. "We believe this technology has a potential to play an important role to combat climate change," Hill said.

BP, formerly British Petroleum, is already using the CO [sub 2] disposal process, known as carbon sequestration, at an experimental plant in Algeria. And at least some other energy corporations see tremendous promise in the technology. American Electric Power, which is based in Columbus, Ohio, hopes to use carbon sequestration at coal-fired plants it is planning to build in Ohio and West Virginia. AEP said it eventually would capture the CO [sub 2] created by incineration and store it in underground reservoirs. The company won't use the process in the plants' first years, however, because it has no financial incentive to do so.

AEP President and CEO Michael Morris said he will build cleaner, coal-burning power plants because he's certain that the federal government will eventually regulate carbon dioxide and thus make sequestration financially sensible. "We decided that we were going to build new coal [plants]," Morris said. "And we were convinced from talking with political officials, as well as environmental officials, that over the life of the generating plant which is typically 30 to 40 years we as a nation will have to take a very appropriate step of addressing the issue of global warming."

The vast majority of scientists who study Earth's climate agree that the planet is warming, and they blame the greenhouse gases that accumulate in the atmosphere and prevent heat from escaping. Since the dawn of the Industrial Age, carbon dioxide levels in the atmosphere have soared because people have burned ever-increasing quantities of fossil fuels - coal, oil, and natural gas. The International Energy Agency predicts that unless the world adopts greener technologies, the global demand for energy will surge at least 50 percent by 2030. Fossil fuels will remain the dominate source of energy, IEA predicts, and will provide more than 80 percent of the additional power needed to keep up with the growing demand.

Carbon dioxide levels in the atmosphere rose from 280 parts per million before the preindustrial era to 380 ppm today. Two-thirds of that increase has occurred in the past 50 years. Today, human activity pumps 7 billion tons of carbon into the atmosphere every year. That's more than triple the amount spewed into the air in 1955. Many scientists fear that as the world's population increases and economic development spreads carbon dioxide levels will skyrocket. A report by the U.N. Intergovernmental Panel on Climate Change predicted that concentrations could jump to between 540 and 970 ppm by 2100, depending on what countermeasures are taken.

As atmospheric levels of CO [sub 2] climbed over the past century, the Earth's surface temperature rose about 1 degree Fahrenheit. The U.N. panel warns of a possible 5-degree increase by the end of this century.

In June, the National Research Council, which is part of the National Academy of Sciences, reported that the final decades of the 20th century were warmer than any comparable period in the past 400 years, and possibly in the past millennium. The warmer temperatures are causing ice sheets to melt in Antarctica and permafrost to thaw in parts of the Arctic Circle. Scientists blame global warming for a worldwide loss of glaciers. And some studies have connected global warming to fiercer hurricanes and unusually extreme droughts, heat waves, and floods.

Scientists worried about global warming argue that national governments should take immediate steps to slash emissions of greenhouse gases. "We should be aiming for the lowest possible level [of greenhouse-gas emissions] that we can get," warned Robert Socolow, co-director of Princeton University's Carbon Mitigation Initiative. "There are no safe thresholds" for increased emissions, he said.

But to halt or slow global warming, the world would have to change the way it generates electricity and the types of vehicles that people drive. "Right now we're rethinking transportation," noted Jae Edmonds, a scientist at the Pacific Northwest National Laboratory and an adjunct professor at the University of Maryland (College Park). "We haven't been in that position in 100 years."

Many scientists, environmentalists, and even some business leaders say that the only way to persuade companies to produce cleaner electricity and to make dramatically more-energy-efficient cars is to regulate carbon dioxide emissions. They argue that the United States should harness the ingenuity of its private sector by charging companies a fee for each ton of carbon dioxide they discharge into the atmosphere.

"There's a real critical wave of investment that's hanging in the balance right now," said Daniel Lashof, science director for the Natural Resources Defense Council's climate center. "Companies are making billion-dollar bets about what kind of power plant to build in an atmosphere of total uncertainty about what the CO[sub 2] regulations are going to look like."

Bush administration officials agree that industry executives should ponder the future cost of emitting carbon dioxide. "If I'm a utility executive thinking about a [power] plant that's going to start operating in 2012, I must be asking myself what carbon is going to cost," said David Garman, undersecretary for energy, science, and environment at the Energy Department. "It doesn't cost anything today, but what's it going to cost then?"

The White House has no plans to propose any sort of carbon regulation, Garman said. "For now, the administration has made the point that it is premature for us to do that," he said. Instead, the federal government is spending billions of research dollars on a wide variety of energy technologies. "Our goal is to bring the cost down for all of the low- or no-carbon power-generating options," Garman said.

The following are the most promising technologies under development with or without government help to reduce the emissions of carbon dioxide and other pollutants that cause global warming.

  
Energy Efficiency  

The best way to reduce U.S. emissions of global-warming pollutants is to make cars, power plants, buildings, and home and business equipment more efficient. "Everything from the [electricity] generation down to the end use there are huge gains to be made with efficiency," said Daniel Schrag, director of the Harvard University Center for the Environment.

Industry scientists agree. "You can use energy efficiency to displace the need for new [electric] plant generation in some instances," said Steve Gehl, director of strategic technologies for the Electric Power Research Institute, an industry-funded, nonprofit research group. "We're looking at data that suggests that 15 percent, possibly more, of your overall generation load could be met by energy efficiency," he said. "Things like lighting programs and appliance standards. There are a whole series of technologies, stuff that already exists and is available commercially but we haven't taken advantage of to the degree that we can."

Last year's Energy Policy Act took a step toward making that happen by requiring the Energy Department to adopt new efficiency standards for 15 large commercial or home appliances, including washers, refrigerators, freezers, air conditioners, and ice makers. Almost half of the states have funds dedicated to promoting and subsidizing energy-efficiency and renewable-energy projects. The money comes from surcharges on customers' electric bills or from utility companies.

Many Americans don't realize that products already in the stores can significantly cut energy bills and limit greenhouse-gas pollution. Since 1992, the Energy Department and the Environmental Protection Agency have operated a program that allows manufacturers to stick an Energy Star label on products that are more efficient than the government's minimum standards. The program also educates consumers about steps they can take to save money and curb global warming. The Energy Star Web site asserts, for example, that if all Americans switched their five most-used lighting fixtures to Energy Star-certified bulbs, we would save a total of $6 billion a year and about 800 billion kilowatt hours of electricity. The switch would also reduce greenhouse gases by 1 trillion pounds a year.

The construction industry is going through an environmental revolution as efficient "green" buildings gain popularity, partly because they cut energy costs. For example, the new 12-story headquarters of the biotechnology firm Genzyme uses 42 percent less energy than a comparable conventional building, according to company estimates. The Genzyme building, in Cambridge, Mass., gets high marks from the U.S. Green Building Council, a coalition of industry officials that rates new buildings based on site development, water savings, energy efficiency, construction materials, and indoor environmental quality.

The group also awarded a top rating to the Bank of America's new $1 billion Manhattan headquarters, scheduled to open in 2008. Designed to use half as much energy as a conventional building, it is the first high-rise to earn the council's platinum rating.

Leaders in some of the nation's most energy-intensive manufacturing industries are also working to cut their energy use and reduce their emissions of greenhouse gases. Last year, chemical giant DuPont announced that in 2004 it had reduced its emissions by 72 percent from 1990 levels and kept its energy use flat.

Likewise, the aluminum industry has made progress in lowering electricity consumption and curbing emissions. "People tend to refer to aluminum as solid electricity," said Jonathan Pershing, director of the World Resources Institute's climate and energy program and former director of the State Department's Office of Global Change. "But they've had significant success. A lot of companies are seeing that efficiency is the lowest-cost deal."

 
"Clean" Coal   

Much of the world's global-warming problem can be blamed on a four-letter word: coal. And coal will continue to fire a large portion of the world's economy for the foreseeable future.

In the United States, about half of all electricity comes from coal-burning power plants. Electricity generation creates 40 percent of U.S. CO[sub 2] emissions, yet with 275 billion tons of recoverable coal, this country is unlikely to break its coal habit any time soon.

China and India, meanwhile, are fueling their development with their equally impressive coal reserves. Some experts estimate that China is building an average of one coal-fired plant every week to power its booming economy.

So it's not surprising that breakthrough technologies that promise to clean up coal by slashing the pollution that even state-of-the-art coal-fired power plants create or by preventing a key pollutant from escaping into the atmosphere are widely considered the most important victories so far in the battle to curb global warming.

American Electric Power decided to invest in the cleanest-burning coal-fired power plants after its shareholders urged company executives to take a long, hard look at how to prepare for the regulation of carbon dioxide. The utility is proposing to build two plants that incinerate coal through a process called integrated gasification combined cycle, or IGCC, which would convert coal into a gaseous fuel before igniting it. This method makes it easier to eliminate conventional air pollutants, such as sulfur dioxide, nitrogen oxides, and mercury, and it will give the company the option of eventually separating CO [sub 2] emissions for capture and storage.

AEP's Morris said he hopes to begin operating the Ohio plant by 2010 or 2011 and the West Virginia facility somewhat later. But first, the company is asking regulators for permission to pass the plants' costs an estimated 15 to 20 percent higher than for traditional plants on to customers.

As AEP, BP, and several other power companies move toward building advanced-technology coal plants, the Energy Department is underwriting a $1 billion public-private partnership to design, build, and operate a similar electric facility. The Bush administration's FutureGen program will use IGCC technology to produce hydrogen fuel and will store the plant's CO [sub 2] emissions in underground reservoirs. The partnership is scheduled to select a site in September 2007 and hopes to begin operation by 2013.

Environmentalists, and some scientists, argue that the Energy Department should distribute that money differently. "Rather than build a single gold-plated plant that is going to take years to get off the ground, I'd say it would be much more productive for DOE to promote more commercial applications" of advanced-coal technologies by commercial utilities, said Lashof of the Natural Resources Defense Council.

So many power plants are under construction and will soon be operating that the electric industry would have to cut its greenhouse-gas discharges by two-thirds just to stabilize the world's carbon dioxide emissions, says Jay Apt, executive director of Carnegie Mellon's Electricity Industry Center. "The sooner you start [to build cleaner power plants], the better it's going to be in terms of cost and dislocation," he said. "What you don't want to do is build a whole lot of new plants that are just the same old technology."

But that's just what most U.S. electric companies are proposing to do, according to a June report from the Energy Department's National Energy Technology Laboratory. The report said that 154 coal plants are on the drawing board for construction by 2030 (although many may never be built). Of that 154, only 24 propose to use today's most advanced coal-burning technologies.

Why are most electric companies sticking with the traditional technology that emits more carbon dioxide? "Because it's the low-cost option maybe not the life-cycle cost, but for the [start-up]," said Gehl of the Electric Power Research Institute. "And because it's a well-known, highly reliable technology."

If the federal government does begin to regulate carbon dioxide, though, the utilities that own those conventional coal-fired plants may have to install expensive new pollution controls.

 
Carbon Sequestration 

Coal-gasification technology would not be the darling of the foes of global warming if it were not for carbon sequestration. Sequestering carbon dioxide is much like filling and corking a bottle, at least in theory. Power plants that can separate CO[sub 2] from the rest of the fuel will be able to pipe it into deep natural holding tanks, such as saline aquifers, depleted oil patches, or coal beds too far underground to be mined. Once filled, a CO [sub 2] repository would be overlaid with impermeable caprock. Some scientists think that the Earth has a huge number of mammoth underground pockets capable of permanently holding CO [sub 2]. "We've got space for 10,000 billion tons globally," Apt said. "It's about five times the amount of storage you'd need by 2050." Eventually, however, the world's expanding use of coal could fill available reservoirs.

The idea of carbon sequestration isn't new. For the past decade, Norway's state oil company, Statoil, has been injecting CO [sub 2] from its North Sea natural-gas fields into an offshore aquifer. Oil companies have long pumped CO [sub 2] into declining oil wells to push out more petroleum but have made no attempt to keep the CO[sub 2] from escaping.

Sequestration could also be used to capture and store greenhouse gases from natural-gas plants, steel and cement manufacturing facilities, and other industrial processes. The most important question about the technology is whether it is possible to lock the gas away forever. "The worry there is whether the CO[sub 2] will escape," Harvard's Schrag said. "Probably, it won't. The problem is, we don't know."

An April report by the Global Energy Technology Strategy Program called for more study to guarantee the long-term success of carbon sequestration. Broad use of sequestration "will depend in part on developing a much more robust and accurate suite of measuring, monitoring, and verification technologies," the report concluded. The research group is made up of scientists from the science and technology institute Battelle, the Pacific Northwest National Laboratory, and the University of Maryland.

The federal government is funding research into sequestration. "We hope that by the time we leave [office in 2009], our carbon-sequestration regional partnerships will have completed on the order of 25 small-scale geologic sequestration field programs in 14 or so states," DOE's Garman said.

Even if sequestration is proven to work almost perfectly, utility companies won't begin using it unless the process becomes less expensive. DOE estimates that sequestration could cost $100 to $300 for every ton of carbon dioxide stored underground. The department hopes that new methods will slash that to $10 or less per ton by 2015. But even that would cost $70 million a year for a typical 1,000-megawatt coal plant operating at full power, according to the Electric Power Research Institute.

 
Nuclear Power 

 "You're not serious about greenhouse gases if you're not serious about nuclear," argues James Connaughton, head of the White House Council on Environmental Quality. He asserts that nuclear power is the only source of electricity that can deliver the massive quantities of energy demanded by the world's growing economies without producing CO[sub 2] emissions.

The United States has 104 commercial nuclear power plants; a total of 440 are operating worldwide. Britain recently gave the green light to expanding its reliance on nuclear power as a way of meeting its ambitious goal of reducing domestic CO[sub 2] emissions 60 percent by 2050. No new nuclear plants have been ordered in this country since a 1979 accident at Pennsylvania's Three Mile Island facility nearly caused one reactor to melt down. At about the same time, Wall Street lost faith in nuclear power because of massive overruns in construction costs.

But the fears of the late 20th century have faded, and a growing number of scientists, politicians, and business executives see nuclear power as the solution to the world's global-warming problems. At least two dozen nuclear power plants are in the planning stages in the United States, according to the Nuclear Energy Institute, an industry trade group. That frenzy of activity was sparked in part by last year's Energy Policy Act, which included a basket of incentives for nuclear plant construction.

The first few companies that build the next generation of nuclear reactors will receive a special tax credit for their initial eight years of operation, as well as insurance protection against licensing delays and litigation. The plants will also be eligible for a federal loan guarantee program designed to encourage technologies that reduce greenhouse-gas emissions.

Those sweeteners may be enough to persuade utility executives to order a nuclear power plant, according to Andrew Kadak, a former utility-industry executive who is an engineering professor at the Massachusetts Institute of Technology. "My sense right now is that utilities are ready, after many, many years of saying, 'No, I don't want to talk about nuclear because I'll lose my job,' "Kadak said "Now they're saying, 'Nuclear is in our plan.' But they're taking baby steps to putting this order in."

DOE's Garman agreed that additional nuclear power plants are on the U.S. horizon. "It's our view that licenses will be filed and that long lead-time orders will be placed by the time that we're done here" in 2009.

Industry supporters say the next generation of nuclear plants will be safer and more efficient than today's facilities. But they will also be more expensive. According to the Electric Power Research Institute, a nuclear power plant will cost about as much to build as a coal-gasification plant. But utility-industry executives anticipate that the federal government will begin to regulate CO[sub 2] emissions within a few years, making coal-fired plants more costly and nuclear power more competitive.

"Part of the reason some of the companies are looking at this is they believe the carbon costs are coming, and this is part of a hedging strategy," said Pershing of the World Resources Institute.

Nuclear power's champions continue to fight an uphill battle with some of their traditional opponents. NRDC's Lashof said his group doesn't support new reactors even though nuclear power creates no greenhouse gases. "Our view is not that it's off the table, but that it's just not among the most promising options," he said. But he added, "If we have a cap [on CO[sub 2] emissions] in place, everything is on the table."

In June, Wall Street once again heard dire warnings about nuclear power. In a presentation to the New York Society of Security Analysts, two energy experts charged that nuclear power is too expensive, that new plants are likely to suffer serious cost overruns, and that the utility industry has vastly underestimated the cost of decommissioning and dismantling nuclear plants at the end of their lifetimes. The analysis came from Peter Bradford, who served on the Nuclear Regulatory Commission and as chairman of the public utilities commissions in New York and Maine, and David Schlissel, a senior consultant with Synapse Energy Economics, a Cambridge, Mass., consulting firm. Bradford and Schlissel noted that the Energy Department still isn't ready to take control of the radioactive waste that has accumulated at commercial nuclear power plants.

In July, DOE tried to put those concerns to rest by announcing that in 2008 it will formally ask the Nuclear Regulatory Commission for a permit to build a permanent nuclear-waste repository inside Nevada's Yucca Mountain. Until then, the department plans to continue to test whether the site can safely serve as a dump for spent nuclear fuel. By 2017, the department hopes to complete construction at Yucca and gain final approval from the NRC to begin accepting waste.

 
Wind Power 

In February, President Bush set a goal of generating 20 percent of America's electric power from wind energy. Even though Bush spelled out no timetable, that's an ambitious proposal, considering that windmills now provide less than 1 percent of U.S. power. But wind is one of the nation's fastest-growing sources of electricity.

Investors like wind for two reasons. First, wind power enjoys a production tax credit that has helped to offset its expensive generating costs. The 2005 energy legislation extended that credit for another two years. Analysts suggest that wind's continued popularity depends on that credit.

Second, 22 states and the District of Columbia require electricity providers to generate some of their power from renewable sources. Those standards have "been very helpful," said Randy Swisher, executive director of the American Wind Energy Association. The government mandates have "taught a sometimes-conservative, slow-to-embrace-new-technology utility industry how economical wind can be," he said.

Electricity-producing wind turbines are popping up at a record pace, with each windmill producing from 750 kilowatts to 1.5 megawatts of power. More than 9,000 megawatts of wind power is now available in the United States. That's the equivalent of the output from nine standard-sized nuclear reactors. Another 3,000 megawatts of wind power is due to come online by the end of this year, Swisher said. Texas has harnessed the most wind power, with California a close second.

Worldwide, wind power produces almost 60,000 megawatts of electricity, meeting 1 percent of electricity demand, according to the World Wind Energy Association. The turbines produce electricity only when the wind is blowing, but Swisher said that utilities are adapting to wind's unreliability by pairing wind turbines with another source of electricity or with energy-storage technologies.

A bigger barrier to expansion of wind power in the United States is the limited reach of the nation's high-power electric lines. "The most significant obstacle to getting to 20 percent," Swisher pointed out, "is the need for transmission to connect the wind resource areas in the Great Plains with the major population centers on the coasts, where the energy would be used."

The Energy Policy Act boosted other forms of renewable energy technology as well. The law offers tax credits to companies that generate electricity from vegetation (or "biomass"), geothermal energy, landfill gas, and trash combustion. The measure also established a federal tax credit for solar-power systems for residential or business use.

While wind power is at the cusp of commercial viability, solar technology is still decades away from providing a significant portion of U.S. electricity. "Maybe in 50 years," said Princeton's Socolow. "It doesn't play a big role in the next 20 years." The problem? Solar power is too expensive. At a July 19 energy forum sponsored by the U.S. Chamber of Commerce, Howard Berke, the CEO of Konarka Technologies, which makes solar materials, said that solar needs a major technological breakthrough to become competitive.

 
Biofuels  

In the race to slow global warming, transportation may be the trickiest problem. Americans own 136 million passenger cars and 92 million light trucks, a category that includes SUVs. Every gallon of gasoline burned in the average American vehicle sends 20 pounds of carbon dioxide out the tailpipe, according to the Environmental Protection Agency.

Transportation accounts for 33 percent of CO [sub 2] emissions in the U.S., and 24 percent worldwide. With China and other developing countries putting cars on the road at a record pace, that global percentage is sure to climb. Socolow estimates that by 2055, 2 billion cars, triple today's number will be operating.

The only way to reduce vehicles' greenhouse-gas emissions is to make them dramatically more efficient or change their source of power. In this country, according to EPA, passenger vehicles are no more efficient than they were in the early 1990s, and they're less efficient than they were in the late 1980s. America's fleet of " light-duty" vehicles, which includes cars, SUVs, vans, and small pickups, averages 21 miles per gallon. In 1987 and 1988, the average was more than 22 mpg.

David Friedman, research director of the Union of Concerned Scientists' clean-vehicles program, said that carmakers already know how to make the average car or SUV go farther on a tank of gas. "With conventional technology, we can look at cutting global-warming pollution by 40 percent," he said, "just by using boring, ho-hum things like more-efficient engines, better transmissions, high-strength steel and aluminum, and something called an integrated starter generator, which allows engines to shut off when you're at a stoplight or in stop-and-go traffic."

Today's most popular alternative to gasoline is ethanol. In the U.S., ethanol is made almost exclusively from corn. Some economists worry that the popularity of corn-based ethanol could drive up the price of corn, slowing imports and raising the cost of food. Farm groups call that fear unfounded.

Today's cars and SUVs can tolerate a gasoline blend that includes 10 percent ethanol. In some parts of the country, producers have long added small amounts of ethanol to gas to reduce emissions of smog-causing pollutants. The United States now has 100 ethanol refineries, which produce a total of 4.7 billion gallons a year, according to the Renewable Fuels Association. Construction is under way on 32 plants, which together will produce another 2 billion gallons.

Detroit is making flexible-fuel vehicles that can run on a blend of 85 percent ethanol and 15 percent gasoline or use conventional gasoline when the ethanol blend, called E85, isn't available. An estimated 3.8 million flexible-fuel cars are on U.S. highways today, according to the Alliance for Automobile Manufacturers. But only about 700 gas stations nationwide offer E85. So the vast majority of flexible-fuel cars are using conventional gasoline.

So why do automakers produce the flexible-fuel cars? The federal government gives automakers a credit of up to 1.2 mpg for each flexible-fuel car or truck they sell. That credit helps the car companies meet federal corporate average fuel economy standards, which are based on the total number of cars and light trucks each firm sells. Each company's car fleet must average 27.5 mpg; light trucks, including SUVs, must average 21.6 mpg.

Still another bump in the ethanol road is that corn-based ethanol reduces the CO [sub 2] emissions that a given vehicle is responsible for by only about 10 percent, once you factor in the petroleum used in the farm equipment and the fertilizer used to grow and harvest the corn. Making ethanol from other plants or from agricultural waste, called cellulosic ethanol, can more significantly reduce greenhouse-gas emissions.

Cellulosic ethanol is made from high-fiber plant materials from cornstalks and agricultural plant wastes to crops grown specifically for ethanol production, such as woody plants. Friedman of the Union of Concerned Scientists said that cellulosic ethanol produces 80 to 90 percent fewer greenhouse-gas emissions than gasoline. "But we need some breakthroughs in terms of the efficiency of making ethanol from those materials," he said. DOE's Garman said that cellulosic ethanol now costs $2 to $2.50 per gallon to make, while corn-based ethanol costs about $1 a gallon.

The president has taken up the call for cellulosic ethanol. In his 2006 State of the Union address, Bush promised to make the fuel commercially competitive within six years. According to the White House, cellulosic ethanol can replace up to 30 percent of the gasoline used by U.S. drivers.

Energy Department officials are even more optimistic. Garman said a 2005 study conducted by DOE and the Agriculture Department found that the U.S. produces 1 billion tons of plant waste. "That could produce enough biofuels to displace 60 billion gallons of gasoline," he said. "Today we use about 135 billion gallons [a year], so 60 is a lot. That's why you saw the president excited about cellulosic ethanol and its potential worldwide."

Scientists in government and corporate laboratories are focused on developing crops that can generate more ethanol per acre. They're also seeking easier ways to turn woody material, such as switchgrass, into commercial ethanol. "In a climate-constrained world, you'd actually grow crops for their energy content alone," said Edmonds of the Pacific Northwest National Laboratory. "You can use biotechnology to develop bulk fuels and designer enzymes targeted at breaking down a particular plant and its cell structure."

For farmers, switching from corn to cellulosic plants might be quite profitable. "Maybe a decade from now, we might be making ethanol on a broad scale from cellulosic," said Dave Miller, director of research and commodity services at the Iowa Farm Bureau. "I'm told the yield of ethanol per acre may make it advantageous to jump from corn to woody pulp plants," he said. "Hey, if that's the case, we may be growing fast-growing poplars in Iowa."

 
Hybrid Vehicles  

Americans have purchased almost a half a million hybrid vehicles since the Honda Insight debuted in the U.S. market in 1999, according to Hybridcars.com. Today's hybrids are powered by a rechargeable battery and by gasoline, and they often combine other energy-efficient technologies to stretch each gallon of gas. Although many hybrids have small engines, the batteries provide extra acceleration power. When hybrids stop, the gasoline motor shuts off and the car runs on the batteries. The batteries recharge when the vehicle is decelerating or coasting.

Hybrids' gas mileage varies greatly, depending on the added amenities. The most-efficient cars can travel 55 to 60 miles on a gallon of gasoline. But instead of mileage benefits, some hybrids offer bells and whistles. GM's hybrid pickup truck comes with a pair of 110-volt electrical outlets.

An updated technology is in the lab: Plug-in hybrids will allow drivers to recharge the batteries by plugging an extension cord into almost any outlet. The plug-in car will have more battery power and so will be able to travel longer distances on electricity. Plug-in proponents say the vehicles could travel at least 40 miles by drawing power from the battery alone.

"Most Americans drive less than 30 miles per day," said the White House's Connaughton. "So for the lion's share of the people who take short trips, they can get an all-electric experience. Then they would plug it in at night when electricity is cheap" to recharge the batteries, he said. Energy experts say the major hurdle facing commercialization of plug-in vehicles is that the current batteries are large, heavy, and take hours to recharge.

Research to improve hybrids' batteries will help advance other transportation technologies that depend on batteries such as electric cars and hydrogen-powered fuel-cell cars that produce no tailpipe pollution.

The Bush administration has set a goal of developing and commercializing hydrogen-powered fuel cells for cars by 2020. Most scientists predict, however, that fuel-cell cars will not be available to the public until decades later. The technology faces daunting problems: The tanks needed to transport the hydrogen fuel are bulky and heavy, and refueling would require construction of a national infrastructure of hydrogen filling stations. In addition, although scientists have made progress on fuel-cell technology, it remains prohibitively expensive. "Hydrogen systems have potential, if breakthroughs come through," said Edmonds. "It could be a really powerful system because it's a great way to reduce the emissions in the transportation sector." But Socolow of Princeton sees hydrogen fuel cells as a distant option. "I tend to see this developing in the second half of the century," he said.

Global-warming specialists say the planet has no time to wait for breakthroughs.

Talking Points

* Carbon dioxide levels in Earth's atmosphere have soared as more and more fossil fuel has been burned.

* The British energy giant BP hopes to prove it can capture CO[sub 2] from a California power plant and permanently lock the gas away.

* Much of the world's global-warming problem can be blamed on coal.

What Goes Up

Only 6 percent of America's energy comes from renewable sources, such as hydroelectric, biomass, wind, and solar. Most comes from fossil fuels.

U.S. energy consumption by source, 2004

        Renewable              6%

Petroleum               40%

Natural Gas            23%

Coal                       23%

Nuclear                   8%

Coal produces the most carbon dioxide per unit of energy, but petroleum contributes more emissions because it is consumed in greater quantity.

In 1999, transportation-related carbon dioxide emissions surpassed industry's emissions.

The Global Picture

Worldwide carbon dioxide emissions rose nearly 50 percent between 1980 and 2004, with China's emissions more than tripling during the period. The United States remains the biggest polluter, accounting for about 22 percent of the total in 2004.

 

(By Margaret Kriz

Source: National Journal, 8/5/2006, Vol. 38 Issue 31, p16.)

 

Do the following tasks: 

1. What are the author's conclusions?

2. What is your opinion? Write an opinion composition.

3. Give a written translation of the part “Energy Efficiency” into Kazakh/Russian. 

 

Unit 3

Text 1 Энергосбережение путем внедрения децентрализованных и автономных систем теплоснабжения

 

 Do the following tasks: 

1. Read the text. Translate the underlined words into English. What do the following terms mean? Translate them

магистральные тепловые сети, центральные тепловые пункты, четырех- трубные распределительные тепловые сети, децентрализация теплораспределения, индивидуальные тепловые пункты, автономное  тепло энергоснабжение, теплонасосные установки, возобновляемые источники энергии, источники низкопотенциального тепла, комбинированная выработка тепла и электроэнергии, газовый двигатель внутреннего сгорания

 

2. Make up 10 sentences of your own with the terms used in the text. Let your neighbour translate their Kazakh/Russian versions into English, then change parts. 

Энергосбережение путем внедрения децентрализованных и автономных систем теплоснабжения 

В настоящее время теплоснабжение существующих и вновь застраиваемых районов в Москве обеспечивается по традиционной схеме – крупный источник тепла (ТЭЦ, РТС), магистральные тепловые сети, центральные тепловые пункты (ЦТП), после них – четырех (шести-, восьми-) трубные распределительные тепловые сети к зданиям.

Это определяет значительные затраты в строительство ЦТП и тепловых сетей, теплопотери при транспорте тепла. При поэтапной застройке одновременно со стартовыми домами необходимо сооружение ЦТП и магистральных сетей вынужденно на полную мощность на перспективу. Теплоэнергетическое оборудование при этом работает на частичных нагрузках, зачастую в нерасчетных режимах, соответственно с низким КПД и излишними теплопотерями.

Отметим основные уровни решения данного вопроса.

1. Децентрализация теплораспределения при сохранении централизованного теплоснабжения – когда при подаче тепла (сетевой воды) от крупных источников – ТЭЦ и котельных, присоединение потребителей выполняется через индивидуальные тепловые пункты (ИТП). При этом обеспечивается снижение объема строительных работ и при последующей эксплуатации – энергосбережение за счет меньших потерь тепла в теплосетях, сокращения перерасхода тепла за счет точного регулирования и учета для конкретного потребителя.

Раньше создание ИТП обеспечивалось только при комплектации оборудованием инофирм (бесшумные насосы, компактные пластинчатые теплообменники, средства автоматизации и учета). В настоящее время возможен выпуск ИТП преимущественно на основе отечественного оборудования.

ИТП уже находят широкое применение в зданиях производственного, культурно-бытового или офисного назначения. В этом случае владелец здания и его служба эксплуатации заинтересованы в применении эффективных решений и современного оборудования для последующей экономичной эксплуатации.

Для жилых зданий, особенно при строительстве по городскому заказу, повышенные единовременные капиталовложения в ИТП представляются нецелесообразными для строительной организации, не участвующей в последующем распределении экономического эффекта (снижения затрат на эксплуатацию). Другие трудности – возможные акустические проблемы при одновременном сооружении ИТП и насосных станций, необходимость выделения помещения для ИТП в здании и организация сервисного обслуживания.

Ожидаемый эффект:

- до 20% экономии тепла (топлива) при эксплуатации и капитальных затрат на оборудование систем теплоснабжения;

- перераспределение основного объема работ от трудоемких строительных (здание ЦТП, сети) к более квалифицированным и наукоемким – производству и монтажу оборудования, что стимулирует развитие отечественного производства и создание рабочих мест;

-  более высокое качество теплоснабжения, улучшение городской среды за счет удаления из застройки здания ЦТП, уменьшения строительных и ремонтных работ по тепловым сетям.

2. Децентрализация теплоснабжения – в районах новой застройки каждый вводимый объект (здание, группа зданий) сооружается одновременно с собственным источником тепла – котельной. Обеспечивается экономия затрат на строительство магистральных тепловых сетей больших диаметров, т.к. стоимость газопровода к котельной здания или микрорайона на порядок ниже, чем теплосети при равной передаваемой тепловой мощности.

Ожидаемый эффект: газ в настоящее время наиболее дешевый энергоноситель и эксплуатационная (топливная) составляющая стоимости тепла от автономных газовых котельных существенно ниже тарифа на тепло.   Кроме того, обеспечивается: до 10% экономии тепла при транспорте и капитальных затрат на магистральные тепловые сети; снятие проблем строительства теплосетей большого диаметра в условиях сложившейся застройки; снижение последствий аварий и отказов на крупных источниках тепла и сетях, когда авария на котельной или теплосети большого диаметра приводит к отключению многих потребителей;  в ряде случаев – более высокое качество теплоснабжения за счет сокращения летнего перерыва на ремонт, возможность расширить сроки отопительного периода – раньше начать отопление, позднее закончить; при сравнении со старыми котельными – более высокий КПД, меньшие выбросы в окружающую среду за счет современного высокоэффективного оборудования новых котельных.

3. Автономное теплоэнергоснабжение. При этом понимается еще большая независимость от внешнего снабжения энергоносителями – когда к зданию подается только холодная вода и электроэнергия. Варианты:

- теплоснабжение за счет теплонасосных установок (ТНУ) и других нетрадиционных и возобновляемых источников энергии (НВИЭ) – ветровой, солнечной. Могут быть вполне экономически эффективны ТНУ при наличии источника низкопотенциального тепла – например, сточных вод. Сами ТНУ достаточно дороги, но при серийном производстве и их совершенствовании стоимость будет снижаться;

- автономное  теплоэнергоснабжение за счет комбинированной выработки тепла и электроэнергии на ТЭЦ небольшой мощности. Варианты названий – блок-ТЭЦ, миниТЭЦ и пр. Внешний энергоноситель – газ. Электроэнергия вырабатывается газовым двигателем внутреннего сгорания (ДВС) или газовой турбиной (ГТУ). Теплоснабжение за счет использования тепла уходящих газов, при необходимости для пиковых нагрузок – прямым сжиганием топлива. Теоретически – наиболее эффективное решение, т.к. сохраняются все положительные стороны отказа теплосетей. Дополнительно экономится около 20% тепла за счет комбинированной выработки тепла и электроэнергии. Практически – серийного выпуска и массового применения мини ТЭЦ нет, стоимость фирменных установок и единичных отечественных образцов высока и может изменяться в широких пределах. Экономически они будут оправданы при постоянной загрузке по теплу, т.е. при максимально полном использовании тепла уходящих газов. При этом необходимо иметь возможность передачи (продажи) свободной электроэнергии в энергосистему, при   недостатке собственной мощности –  получать (покупать) электроэнергию. Такого опыта и финансового механизма нет. Если миниТЭЦ рассматривать именно как средство полностью автономного теплоэнергоснабжения, без взаимодействия с энергосистемой, то с учетом необходимого резервирования и обеспечения пиковых нагрузок ее мощность и стоимость резко возрастают. За рубежом внедрение миниТЭЦ и НВИЭ обеспечивалось соответствующим хозяйственным механизмом государственной поддержки и комплексом мер экономического стимулирования – например, энергосистемы обязаны покупать электроэнергию от мини ТЭЦ и НВИЭ по высокому тарифу, производителям оборудования предоставляются льготы и пр. Необходимо отметить следующее. Все перечисленные направления подразумевают, что потребитель получает энергию в необходимом количестве и соответствующего качества (параметры теплоносителя, надежность). В то же время основной путь энергосбережения, это сокращение его расточительного потребления. Давно известно, что удельные расходы тепла на отопление и горячее водоснабжение у нас значительно (иногда 2-3 раза) выше, чем в развитых странах при близких климатических условиях (например, в Дании). Это уже вопросы другого круга – жесткие нормативы теплопотерь, эффективная теплоизоляция, воспитательные меры, тарифная политика и пр.

Выводы:

- из перечисленных направлений уже применяющееся и рекомендуемое в дальнейшем решение – это применение ИТП в случаях возможности подачи тепла от имеющихся источников Мосэнерго и Мостеплоэнерго;

- для нового строительства, когда подача тепла от существующих теплоисточников невозможна или требует больших затрат в строительство магистральных сетей, экономичны варианты децентрализованного теплоснабжения с котельными здания или микрорайона;

- для получения реального опыта эксплуатации, экономического анализа и последующих выводов необходимо на реальном объекте применить варианты автономного теплоснабжения – прежде всего с миниТЭЦ и НВИЭ (теплонасосными установками), для ряда районов – и с солнечными коллекторами;

- в любом варианте, работы по сокращению энергопотребления приносят прямой эффект экономии топлива и должны продолжаться и реализовываться в первую очередь.

 

(С.А.Козлов)

Do the following tasks: 

1. Name the main ways of solving the problems touched upon in the article and translate  them into English.

2. Find some additional materials devoted to the problem raised in the text and write a report in English. 

Text 2 Oil and Gas: Drilling for a Compromise

Do the following tasks: 

1. Find an extract where the main problem of the article is described. Give its summary.

2. Find in the text following abbreviations and give their full version: CVX, XOM, DOW, IP, FBR, GOP. Translate the sentences where these abbreviations are used.

 3. Write out specific terms used in the article and translate them into Kazakh/Russian. 

Oil and gas: drilling for a compromise

Competing offshore drilling bills from both houses of Congress may end up being no more than chum in election-year waters

 Now that both houses of Congress have passed bills opening up the U.S.'s outer continental shelf to drilling, oil and gas companies are celebrating, right? Wrong. The tough battle still lies ahead. And the whole tale starkly illustrates the challenges business faces navigating the political shoals of Washington.

 

Wide gap in bills 

For starters, companies and industry groups lobbied hard for a Senate bill that fell far short of what they wanted. The 8.3 million acres of offshore waters opened to drilling under the bill are so small that "it's a big nothing-burger," scoffs one Senate Energy Committee staffer. Meanwhile, the House bill is no beauty queen either. It would allow massive drilling. But it's so full of dubious provisions, such as dramatically reduced environmental protections, that lobbyists are hoping people don't read the fine print. "The House bill is one of the most under covered crimes in recent legislative history," says a top House aide. Normally, the House and Senate might be able to work out their differences and fix the glitches. This time, however, the gulf between two bills is so vast that compromise is fiendishly difficult, longtime Hill aides say similar to what just happened with immigration. Indeed, the Senate so dislikes the House provisions that it has declared it won't budge an inch. Moreover, both bills allow states to pocket a big chunk of the royalties the federal government normally collects from oil and gas companies, stirring up opposition among fiscal conservatives because of the effect on the federal budget. "There is a recognition on the Hill that this is a Pandora's box a very dangerous place to go," says Philip Clapp, president of the National Environmental Trust.

 

New boundaries 

To make the political calculus even tougher for companies, the Bush Administration, independent of action in Congress, has quietly redrawn boundaries in the Gulf. The Interior Dept.'s Minerals Management Service has moved the drilling boundary line closer to Florida, thus adding 2 million acres to the area available for leasing. "It is a really bold move the kind of thing that happens when you can't do anything in Congress," says Kevin Book, energy analyst for Friedman Billings Ramsey Group (FBR). And the Administration has the power to do far more. Why is this a problem for industry? The newly opened area is relatively small and access could be taken away by another Administration, even as the precedent could reduce the perceived urgency in Congress to act. "To make a difference, we need the legislative change," argues Bob Slaughter, president of the National Petrochemical and Refiners Association. As a result, business is walking a lobbying tightrope. "A chance to get something done like this only occurs once in a decade," Slaughter explains. "You have to be pragmatic and step back and say, what is politically possible? I don't think, honest to God, that anyone knows yet."

 

Election-year deals 

What is clear is the primacy of politics. Polls show that gasoline prices are a top issue for Americans, so members of Congress must show they're doing something. "The fact that a bill got out of the Senate at all is a reflection of the highest gasoline prices since the Carter Administration," says Clapp. But it also wouldn't have happened without a handout to Louisiana and other Gulf Coast states, which for years have argued that they deserve a big chunk of the royalties from the resources off their shores. The clamor has grown as prices, and thus potential royalties, have soared. Sen. Mary Landrieu [D-La.] "created a coalition that wouldn't allow a bill unless her revenue was on it," says one Senate staffer. Passing the Senate bill is a victory for Landrieu, giving her a badly needed boost in a tough re-election bid. And a Landrieu win in November bolsters the chances of Democrats retaking the Senate. Hill watchers say that's why Senate minority leader Harry Reid [D-Nev.], no fan of expanded production, agreed to go along. The Republicans had their own motives. Senate insiders suggest that Sen. Mitch McConnell [R-Ky.] and the GOP leadership were happy to send hundreds of millions to Gulf Coast states to curry favor with Sen. Trent Lott [R-Miss.]. McConnell is currently the frontrunner to replace Sen. Bill Frist [R-Tenn.], who is stepping down as majority leader. But Lott hasn't yet ruled out running for the spot himself. Moreover, the bills contain plenty of goodies for Florida, which under Gov. Jeb Bush has been a powerful opponent of offshore drilling.

 

Pumping up the deficit 

These revenue-shifting provisions were key to passing the individual House and Senate bills. But they are an obstacle to getting final legislation, since at that point the cost of the provisions actually matters. "In both cases, they are ticking time-bombs," explains Steve Ellis, vice-president of Taxpayers for Common Sense Action. Under current law, the federal treasury gets about $8 billion to $10 billion a year in royalties from drilling on the outer continental shelf. Under the Senate bill, the states would get more than $500 million in new royalty revenue in the next ten years. The House measure would ship about $18 billion to the states in the same period. Some of the states' revenue would come from new leases, so there's not an actual drop in the federal take. But over time, the hit to the Federal treasury would be huge. In both bills, Congress actually limited the states' share during the first ten years, since the Congressional Budget Office only looks that far ahead when assessing the budgetary implications of legislation. "After 10 years, the costs are going to skyrocket," explains Ellis. Once that is more widely understood, it won't fly with the budget hawks. Business's big worry now is that Congress has neither the need nor the will to fix the problems and broker a final deal. "This opportunity may not come again," says Slaughter. Yet time is short. When lawmakers come back after Labor Day, they'll have only a month to broker a compromise before scattering again to campaign. "We recognize it's a race against the clock," says Jack N. Gerard, president of the American Chemistry Council, which leads a coalition of dozens of companies, called Consumers for Energy Security, pushing for offshore drilling. Backers of increased drilling include everyone from producers like Chevron (CVX) and ExxonMobil (XOM), to big consumers like U.S. Steel (X), DuPont (DD), and Ciba Specialty Chemicals (CSB), plus farmers and paper producers.

 

Compromise: unlikely 

So what's the best strategy? During the recess, the industry coalition tried to send the message strongly from the grassroots while soft-pedaling in Washington. "We're allowing some time to elapse as people go home and talk to their constituents," explains Peter A. Molinaro, director of government affairs for Dow Chemical Company (DOW). The hope is to get Congress to stop the politics long enough to do serious work on the problems in each bill. "We know for certain that neither bill will be the final bill," says John V. Faraci, chairman and chief executive officer of International Paper (IP). "The important thing is to get this to the finish line." Optimists say there's at least an even chance that the approach will work. But they're in the minority. Most participants and observers give a final bill little chance of passing. Still, if war, political turmoil, or more pipeline problems cause oil, gasoline, and natural gas prices to climb, that would increase pressure on lawmakers to allow more offshore drilling. "What we have to do is wait and see how this plays out," says Molinaro.

 

(By John Carey

Source: Business Week Online, 8/31/2006, p9.)

 

Do the following tasks: 

1. Make up 10 questions about the text and let your neighbour answer them, then change parts.

2. Retell each part of the text separately.

3. Give a written translation of the text into English.

Unit 4

Text 1Future Energy

Do the following tasks:

1. Read the text. Define the main problems raised in the text. What are the author's conclusions? What is your own opinion?

2. Make up a detailed plan of each part of the text: a) divide the text into several parts; b) give each part a heading. Retell each part of the text separately.

3. Make up a list of new terms you can find in the text. Translate them into Kazakh/Russian.

4. Read the following text. Translate the underlined extracts into Kazakh/Russian. 

Future energy

The need for new approaches to energy research 

Secure and affordable energy supplies are vital for economic and social development. Existing drivers and by-product of economic and social development increase demand for energy, most noticeably in countries and industrial prominence. As a result, world demand for energy is rising steadily. Known reserves of conventional carbon-bearing energy sources, largely oil and gas are being extended with new discoveries, but they are generally in geologically and geopolitically more difficult areas. Increases in annual production to meet demand will outstrip extensions to reserves and reserve-to-production ratios will fall, in some cases to single figures, in the most industrialised countries. Reserves of coal may last much longer as a future electricity-generating fuel, for instance in excess of 200 years in USA, but coal emits more CO2 than oil and gas as do heavy-oil or oil shale fuels. Advances in exploration techniques and further exploitation of mature oil and fields with enhanced oil recovery technologies may increase the known carbon-bearing reserves and security of these fuel sources. However, even if these additional reserves were adequately to increase security of supplies, their combustion would add to the already rising CO2 volume in the atmosphere unless effective and economical carbon sequestration techniques were to be applied on strategic scale.

Climate change and its effects may be partly attributed to increased atmospheric CO2 concentrations and the Kyoto protocol seeks to reduce annual production of CO2. As a group, the EU agreed to reduce its emissions by 8% below 1990 levels for the first Kyoto commitment period between 2008 and 2012/ Within this, the UK must reduce its CO2 emissions by 12,5% and has set a domestic ambition of component of the basket of emissions requires the volume of carbon in the energy supply chain to be lowered, primarily in the transport and electricity production sectors. Demand reduction is most effective since energy 'not used' reduces carbon flows all the way down the energy supply chain and conserves the hydrocarbon resource. There may be limited expectations of demand reduction in the short term since this is perceived to restrict industrial growth, social development, and personal lifestyles. However, some demand reduction could be enabled by: improving fuel use and efficiency; heat and electricity demand management; greater deployment of micro-generation and industrial combined heat and power plants. Successful operation and monitoring of such an evolved end-usage of energy will depend on advances in widely distributed data capture, processing, and communication. Enabling economic and social growth and also meeting future demand for energy in an environmentally and economically sustainable manner present significant global and local challenge. Demand must be reduced where possible, existing and new resources of conventional fuels must be used more prudently, and alternative sources of energy must be developed into commercial viability.

 

A system Approach to Future Energy Research 

Given the need to conserve carbon-bearing energy sources for as long as possible, it is imperative to find and advance new sources of low-carbon or renewable energy, including biomass, marine, photovoltaic, fuel cells, new-fission and fusion and to develop carbon management technologies. This will require fundamental and applied whole-systems research across the engineering, physical, life, and social sciences. The energy system is perhaps one of the largest, naturally-, socially-, and capital-intense examples of an interacting system. It may only be developed by whole-system research over the next two decades there will need to be new kinds of conceptual and technological tools operated on the multiple intersections of, for instance, biology, engineering, geology, communications, meteorology and climatology. There will need to be significant and enabling scientific advances in new materials, computing, data capture, and synthesis, communications, modelling, visualisation, and control. Highly novel approaches will need to be applied in research activity all the way down the energy supply chain to help establish viable future energy sources.

For example, spatial and temporal characterisation of the main marine renewable energy resources – offshore-wind, wave, and tidal-currents will require advances in atmospheric sensing, climate and weather data acquisition in order to be able to model fully the behaviour and interaction of wind, sea, and devices down to and through the air-water boundary. This will increase the ability to predict the variable energy production, forecast and survive storms and improve coastal defence. Real-time modelling of the combined effects of waves and tidal-currents will also be necessary to predict device interaction, reliability, and survivability.  This will not only require powerful new predictive modelling capabilities to model the combination of meteorological, climatic, oceanographic, environmental, and social effects, against a backdrop of climate change. This type of modelling capability may be made possible by the kinds of advanced modelling approaches outlined above in the 'Prediction Machines' section.

Bio-energy crops, as another example, offer large untapped potential as a source of renewable energy with near-carbon neutrality if grown, harvested, and converted efficiently and with predictable performance. Production of both solid fuels (combusted dry and wet biomass) and liquid fuels (bioethanol, biodiesel) from a wide range of dedicated energy crops (such as grasses and short rotation trees) and food crop plant sources (including wheat, maize, and sugar beet) in an environmentally sustainable manner requires better synergies between fundamental biological discoveries in genomics and post-genomics, and the application of massive computing power. This 'systems biology' approach aims to harness the information from molecules through to whole organisms – from DNA to transcriptome and proteome and beyond. Technologies in high throughput biology will generate vast data in this area over the coming decades and advanced computing processes and technologies will be vital, from the development of grid systems for data sharing through to producing new algorithms to make predictive models for enhanced plant performance and 'designed' plant quality. Similar principles can be applied to harnessing the power of micro-organisms where enzyme systems for degrading lingo-cellulose may be available but not yet applied in commercial systems. Biohydrogen and artificial photosynthesis provide another biological resource for future development and identifying natural variation and mutations in DNA that may be relevant to evolving these technologies will again rely on development of new computing approaches. At the other end of this energy chain there are coal-fired power stations that could be readily adapted for co-firing with biomaterials such as straw and coppice wood. However, optimized co-firing wood introduce new challenges in design and prediction. Modelling flow and combustion for particulates with such disparate densities, sizes, and compositions as coal and straw requires an improvement in complexity, resolution, and visualization of the flow, combustion, and energy processes amounting to several orders of magnitude over that which is currently being used.

These are just two examples of the many renewable energy resources that could become part of a lower-carbon electricity supply by 2020, but integration of renewable resources with the electricity network in most countries presents another barrier that must be removed. Many of these resources are most abundant in the least densely populated areas, where the electricity distribution network was originally installed to supply increasingly remote areas of lower demand. The network there is largely passive and not actively managed with outward uni-directional power flows from the centrally dispatched power plants connected to the transmission network. The number of generators connected to the future distribution network could be orders of magnitude greater than the number of larger plants currently connected to the existing transmission network. Power flows will reverse in many areas and will be stochastic in nature. Rapid collection, transmission, and processing of data to produce near real-time control responses to this stochastic change will be a key to successful operation of such a future electricity supply system. Assimilation of the data and the state estimation of the network to anticipate and control changes in the system will require bi-directional communication. The volume and speed of data flow and its processing will need to be increased by several orders of magnitude. There will need to be new data aggregation, storage, and processing algorithms to enable the new control techniques at the end of the two-way communication. Machine learning and near real-time optimization techniques may offer this advance in the period up to 2020.

There are many advances that will be necessary to realize these and other future sources of energy, and to understand mitigate change to the natural environment due to the renewable energy conversion. This will have to be set in the whole-systems interdisciplinary context and calls for computing and computer science roadmaps to plan the journey for the techniques and technology to the end points that support this vision. To this end, this 2020 science roadmap serves a vital purpose alongside the other research road-mapping taking place in the individual technologies.

 

(By A. Robin Wallace

Source: Towards 2020 Science, Microsoft Research, 2006, p65-66.)

 

Do the following tasks:

1. Write a resume of the text.

2. Give a written translation of the text into Kazakh/Russian. 

Text 2 Обзор методов рационального использования энергетических ресурсов

 

Do the following tasks: 

1. Make up a list of terms you can find in the text. Translate them into English.

2. Read the following text. Translate the underlined extracts into English.

3. Make up 10 sentences of your own with the terms used in the text. Let your neighbour answer them, then change parts.

        

Обзор методов рационального использования энергетических ресурсов 

В настоящее время одной из наиболее актуальных проблем является проблема энергоресурсосбережения. Одним из способов решения этой задачи является более рациональное распределение энергетических ресурсов в соответствии с потребностями потребителей на базе глубокого экономического анализа.

Основным источником энергии во всем мире является органическое топливо: природный газ, нефть и уголь. Стоимость угля всегда намного меньше цены природного газа и тем более цены легкого жидкого топлива. Однако использование твердого топлива требует дорогостоящей подготовки угля перед сжиганием, а потом еще требуется решать проблему размещения очаговых остатков (т.е. золы, шлака или провала). Всего этого не нужно при сжигании жидкого или газообразного топлива. Более того, процесс сжигания газа или мазута может быть полностью автоматизирован и, следовательно, небольшие отопительные котлы могут работать без присутствия персонала. Это значительно снижает как первоначальные затраты, так и текущие эксплуатационные расходы. В результате, как ни странно, оказывается, что дешевле генерировать тепло за счет более дорогих топлив. В экологическом плане использование газа и легкого жидкого топлива также дает важные преимущества.

С другой стороны, если котел работает на солярке, мазуте или другом жидком топливе, то еще до поступления в топливный резервуар начнется череда потерь. С самого начала (при добыче нефти) почти 6% энергии содержащейся в сырой нефти, теряется в результате выделения газов из жидкой нефти. Потери при транспорте нефти к нефтеперерабатывающему заводу (НПЗ) составляет примерно 1%. Сырая нефть перерабатывается на НПЗ, и для получения легких фракций жидкого топлива приходится тратить еще около 9% энергии (если технология переработки нефти предусматривает получение малосернистого топлива). На распределение готового топлива от НПЗ до потребителя также расходуется энергия, эквивалентная примерно 1% энергии топлива. Таким образом, еще до поступления в котел потери уже составляют значительную величину.

Природный газ благодаря своим специфическим свойствам, относительно низкой цене и легкости транспортировки стал одним из основных источников энергоснабжения.

Существенное сокращение объемов поставок газа и ужесточение со стороны газоснабжающих организаций дисциплины газопотребления ставит пред руководителями предприятий и организаций задачу наиболее эффективного использования этого топлива и подъема на качественно новый уровень работ по энергосбережению.

Повышение энергоэффективности газопотребляющих предприятий предполагает решение следующих проблем:

- проведение коренной модернизации газоиспользующих агрегатов (котлов, промышленных печей, отопительных систем);

- разработка и выпуск современных автоматизированных экологически чистых газогорелочных устройств (ГГУ) для различных сфер применения;

- замена в ряде технологических процессов, а также систем управления ими;

- совершенствование технологических процессов, а также систем управления ими;

- внедрение новых приборов учета расхода газа и тепловой энергии.

В условиях дефицита природного газа – одним из путей его рационального использования и снижения до минимума непроизводственных потерь о  транспортировки теплоносителя является децентрализация теплоснабжения.

С учетом негарантированных поставок газа и снижения объемов его подачи одним из эффективных  методов отопления больших производственных помещений (с высотой потолка не менее 5м и постоянным притоком наружного воздуха) является применение так называемых систем лучистого обогрева, или систем инфратемного излучения.

Использование такого оборудования, особенно в строительной отрасли и машиностроении, позволит обходиться без традиционного парового или водяного отопления производственных корпусов, получить экономию газа и отказаться от монтажа отопительных систем, трубопроводов, насосных групп и другого вспомогательного оборудования. При этом значительно повышается комфортность рабочих мест. Излучатели размещаются непосредственно над рабочими площадками. Принцип действия и конструкция позволяют устанавливать их на любой высоте. Лучевые приборы требуют меньших затрат топлива, чем другие обогреватели, потому что отапливают помещения и согревают людей подобно тому, как это делает солнце. Оно не нагревает земную атмосферу напрямую. Солнечные лучи, проделав путь в миллионы километров, передают энергию поверхности Земли, от которой нагревается воздух. Далеее тепло распростроняется путем конвекции.

Особенно выгодно применять инфракрасные обогреватели там, где велики тепловые потери, например, в зданиях с большими воротами или плохой теплоизоляцией.

В мире накоплен большой опыт по использованию в энергетике биомассы. Будучи богатой природными ресурсами, наша страна значительно отстает в данной области.

Попытаемся обозначить основные проблемы и тенденции, связанные с гигантским потенциалом применения древесины в энергетике.

В последние годы использования в качестве топлива отходов лесной промышленности приобретает все большую остроту из-за истощения невозобновляемых источников энергии (нефть, газ).

Кардинальные ценовые изменения нв российском топливно-энергетическом рынке, произошедшие за последние 5-8 лет, перспективы дальнейшего удорожания электрической и тепловой энергии (в 2 раза), природного газа (в 2-3 раза), мазута (на 30-40%), каменного угля (на 50%) предопределяют необходимость масштабного применения древесного топлива.

Времена, когда дешевле было протянуть нитку газопровода или подвезти по железной дороге уголь или мазут, чем решать проблемы рационального использования древесины, прошли.

Сегодня низкосортной древесины вполне достаточно для полного удовлетворения потребностей в тепловой энергии большинства предприятий лесного комплекса и всех котельных жилищно-коммунальных хозяйств в малых поселках и небольших городах лесных регионов. Невостребованное древесное сырье вполне может заменить мазут, а в малых промышленных и муниципальных котельных (1-5 МВт) при относительно небольших вложениях на реконструкцию, даже если использовать только импортное оборудование преуспевших в данной области, составляют около 100 долл./кВт. Российское оборудование обходится в 1,5 – 2,0 раза дешевле. В мире наработано используется немало технологий по превращению биологических отходов в тепло и электроэнергию.

Эффективность использования древесины как топлива зависит от распределения по территории страны лесных массивов и населенных пунктов, а также от мощности энергоустановок. Значительное территориальное рассредоточение исходного сырья и потребность в его больших объемах приводят к большим транспортным издержкам. Эта проблема отсутствует, если в дело идут отходы крупных предприятий деревообрабатывающей, целлюлозно-бумажной промышленности, - все утилизируется на месте. Когда сырья не хватает, транспортные расходы могут быть непомерно высоки.

Исходя из вышесказанного, видно, что использование природных ресурсов  в соответствии с потребительскими запросами принесет значительную экономию топлива и денежных средств, а также повысит эффективность их применения.

 

(Е.А.Володин, В.С.Щеглов)

Do the following tasks

1. Name the main ways of solving problems touched upon in the article and translate them into English.

2. What are the author's conclusions? What is your opinion? Do you know any other ways of solving these problems?

3. Give a written translation of the text into English.

4. Find some additional material devoted to the problem raised in the text and write a report in English.

 

Unit 5

Text 1 Burning Questions

Do the following tasks: 

1. Write out specific terms used in the article and translate them into Kazakh/Russian.

2. Explain the meaning of the following:

integrated gasification combined-cycle plants, save fuel, combustion chamber, "Hashback"

3. What do the following abbreviations mean?

         IGCC, ORNL, NETL 

Burning questions

Combustion research prepares for the more complex fuel supply of the near future 

The United States has grown accustomed to a reliable and fairly consistent portfolio of fossil energy sources. Over the past decades, transportation, for instance, has relied on domestic and imported crude oil; domestic coal and natural gas have fueled power generation. Fuel oil and natural gas have heated homes.

Some of the consistency that we have taken for granted is changing. Developments are under way to increase imports of liquefied natural gas. Gasification, meanwhile, is a candidate for a clean way to tap the country's vast coal resources. As a result, the coming decade is likely to bring a much greater diversity in composition and properties of gas fuels than American industry has grown accustomed to. And with that diversity will come both opportunities and challenges.

A key challenge today is environmental emissions requirements, particularly in regard to nitrogen oxides, which are responsible for smog and acid rain. There is also a growing interest in reducing carbon dioxide emissions. Improving efficiency can reduce CO[sub 2] production and save fuel, but in some applications may also increase the output of NO[sub x]. A future challenge will be to devise ways to continue reducing emissions.

Carbon dioxide reductions can be achieved with hydrogen or oxy-fuel power systems, coupled with permanent CO [sub 2] storage underground, or sequestration, but these systems introduce challenges of their own.

The opportunities are for engineers who can meet the challenges.

 
Gas from coal 

The United States has significant coal reserves. With advanced technology, that coal can be used very cleanly, with levels of emissions comparable to today's natural gas-fired plants. One way to do this is by gasifying the coal, in essence by placing the coal in a large "pressure cooker" to create a gas of mixed hydrogen and carbon monoxide.

Synthetic gas can be used for a variety of purposes, ranging from the production of petrochemicals to generation of electricity in combined-cycle plants, which combine gas and steam turbine cycles. A few IGCC (integrated gasification combined-cycle) plants are in operation using coal. Coal is gasified to fuel gas turbines, whose hot exhaust is captured to make steam to run a second set of turbines.

Depending upon the source of coal and the gasification technology, the composition of the syngas can vary significantly. For example, the hydrogen levels of syngas at current IGCC installations, an important combustion parameter, range from 10 to 60 percent between sites. This range in fuel composition will complicate the design and operation of modern combustors.

Modern natural gas combustors at power plants are designed for low NO[sub x] production. They are quite different from older models or even from modern aircraft engine combustors. Older systems mix the fuel and air in the combustion chamber, for a robust, stable flame with a wide turndown range; but also one that produces high levels of NO[sub x] and soot.

Modern designs operate in a premixed mode. Fuel and air are mixed upstream of the combustion chamber. While pre-mixing allows for very low emissions, it also introduces a host of operability issues. First, because the mixture can burn before it reaches the combustion chamber; there is a danger of autoignition (much like knock in an automotive engine). In addition, "Hashback," where the flame propagates upstream, can occur. In either instance, high-temperature gases entering regions not designed for the heat can damage parts. In addition, these systems are prone to oscillations, referred to as "combustion instabilities," which result in large amplitude acoustic oscillations that can reduce part life.

Field optimization of these systems often involves difficult balancing of a number of performance demands; for example, low emissions, high power, high turndown, high efficiencies, and low pulsation levels. Because these demands are often conflicting, the allowable space of operation is often quite tight so that variations in fuel composition, ambient conditions, or even part wear can degrade performance and increase pulsation levels if the system is not retuned.

Current IGCC installations use older technology that can handle the varying syngas compositions without too much difficulty. However, the variability in syngas composition is problematic for premixed operation, the preferred mode for future systems. A system designed to operate reliably with one syngas with low hydrogen levels may need to be redesigned, or may require additional measures (such as steam injection) to operate satisfactorily with a higher hydrogen-content fuel.

In addition, the problem of acoustic pulsations is very system-specific and difficult to predict. Measures taken to eliminate a combustion instability problem with one syngas fuel may actually exacerbate the problem with another fuel, and vice versa.

 
Insight into combustion 

In order to meet these challenges, one thing is clear: We need to better understand the complexities of combustion. Treating the combustor as a black box will not work. For this reason, industry, government, and academic researchers have teamed up in several projects, primarily sponsored by the U.S. Department of Energy, to study advanced combustion.

Exciting progress has been made, but more work remains. For example, one important property of a flame is its propagation speed. The problem is that we have little knowledge of the flame speed of syngas mixtures at the pressures and temperatures of interest. Work in making these measurements, such as that at Princeton University or Georgia Institute of Technology, is filling in these gaps, but many more measurements are needed.

Once the properties are known, analysts will be able to validate and improve chemical kinetic mechanisms, needed for computational simulation of combustors. Similarly, an experimental testbed called the Simval project has been fabricated at the National Energy Technology Laboratory (NETL)  with the purpose of providing data from a subscale system that can be used to validate computational simulations. Once validated, these models can then be applied to other conditions. Computational models, it built on the right physics, offer exciting opportunities for evaluating the performance of a given design-fuel combination, without the need for expensive tests.

Work also is being performed to develop better sensors and controls so that plants are "smarter" and can adapt well to variations; much in the same way as today's automotive engines do. For example, workers at Oak Ridge National Laboratory (ORNL)  and Georgia Tech have developed acoustic techniques that "listen" to the flame to monitor its health.

Similar challenges will be posed by a greater diversity of natural gas in the U.S. fuel supply. Because of domestic shortages, there has been a boom in interest in importing liquefied natural gas from Africa, Asia, and South America. Gas composition differs from place to place, so gas from Qatar or Nigeria will not have the same composition as gas from Texas.

On a volume basis, the potential compositional variations in methane, the primary constituent of natural gas, are not substantial, ranging from about 75 to 95 percent. However, offshore sources often contain much higher levels (on a relative basis) of higher hydrocarbons, such as butane or propane. The impact of these variations on properties such as turbulent flame speed or autoignition time are not fully understood, and must be measured to enable future combustor designs to accommodate the widest possible range in fuel composition.

Variable natural gas and syngas pose the same kind of challenges for low-emissions gas turbines, because the devices are usually tightly optimized to meet their ultra-low emissions levels. Fuel composition can change combustion instability characteristics. Unfortunately, we do not understand the combustion process well enough to foresee what the change will be. Combustors are manually tuned to the specific fuel by adjusting various flow splits on the engine.

If the fuel composition remains relatively constant or changes slowly, variations can be dealt with by tuning. The challenge is dealing with swings in composition if these changes occur very rapidly and frequently. One solution being explored is a continuous automated tuning process; as opposed to scheduled manual tuning; that continuously adjusts parameters to optimize performance as the fuel composition, humidity, or ambient temperature changes.

A potential method of accommodating variable fuel composition is to develop technology that can sense and control combustion parameters. For example, a prototype hydrogen concentration sensor is being developed by Michigan State University and the National Energy Technology Laboratory. This sensor is intended to provide a low-cost, rapid measurement of hydrogen concentration in synthetic gas. If implemented in a system, these data can then be fed into a controller, which can make suitable adjustments to the combustor to ensure optimal operation.

Higher energy prices and changes to the regulatory environment have also renewed looks at other fuel sources. For example, the utilization of the gas from landfills due to the decomposition of organic matter is growing rapidly. Combusting these fuels raises interesting challenges because of their low heat content. They can be composed of almost 50 percent of inerts, such as carbon dioxide. Other biomass fuel sources include gasified wood wastes or even gasified chicken waste. Again, a key challenge in such situations is the varying composition of the fuel: The gas produced from one source or gasification process can be quite different from another.

 

Catch that carbon 

There are also interesting combustion challenges associated with proposed cycles to capture carbon dioxide.

CO [sub 2], released during the combustion of any fossil fuel, is a suspected contributor to global warming.

Various studies have shown the potential to capture CO[sub 2] during the coal gasification process, leaving pure hydrogen as a clean fuel. The hydrogen can be used in gas turbines, or supplied to other industrial processes.

Alternatively, syngas, without hydrogen separation, can be burned in an oxy-fuel cycle. In this system, oxygen is supplied by an air separation unit. Burning the fuel with pure oxygen would create a very high-temperature flame. In order to keep the combustion temperatures down, some of the combustion products, CO[sub 2] and

H[sub 2]O, are recirculated back and mixed with the fuel or air. The water in the exhaust products can be condensed out and the CO[sub 2] pumped into storage in geologic formations such as depleted oil and gas reservoirs, essentially putting the carbon back where it originated. This is commonly referred to as CO[sub 2] sequestration.

In addition, the CO[sub 2] can be used to stimulate the pro-auction of marginal oil wells, or to enhance the production of coal bed methane. In these cases, the CO[sub 2], while it is being stored, is useful to enhance production of energy. An example is the Dakota coal gasification plant in North Dakota, where a synthetic natural gas is produced from coal, and the CO[sub 2] from the plant is sent more than 200 miles north to enhance oil-field production in Saskatchewan.

From a combustion standpoint, oxy-fuel systems present new opportunities and issues. After removal of exhaust water by condensation, the remaining exhaust stream is captured for sequestration, leaving no emissions. This simplifies the combustor design, because combustion techniques to avoid NO[sub X] formation are not needed.

Oxy-fuel approaches also can be applied to gas and coal-fired boilers, where increased heat transfer is desirable. However, the oxidizer is no longer free, as oxygen must be supplied from an air separation unit. Consequently, minimizing system costs requires minimizing excess oxygen levels, while maintaining very high combustion efficiency. In contrast, low-NO [sub x] systems burning air typically operate with large amounts of excess oxidizer.

Compared to conventional air-fired combustion, the radiant heat transfer from the hot combustion products to the combustor walls is also a lot higher. This is because the exhaust products are exclusively H [sub 2]O and CO[sub 2], both very efficient radiators relative to nitrogen. This may require changes to combustion liner cooling approaches.

A number of market-driven and regulatory forces are motivating a growing diversity in fuel choices and combustion technology. The key challenge for the engineering community is to combust these fuels as has been done over the last decades, but with minimal pollutant levels. Increased understanding of the complexities and intricacies of combustion is enabling these challenges to be met, but a variety of interesting and exciting opportunities remain for continued research and development.

 (By Tim Lieuwen and George Richards

Source: Mechanical Engineering, Mar2006, p40.)

 

Do the following tasks: 

1. Make up 10 questions about the text and let your neighbour answer them, then change parts.

2. Complete the following sentences from the text. Translate them into Kazakh/Russian.

1)     … … …, has relied on domestic and imported crude oil; domestic coal and natural gas have fueled power generation.

2)     … … …, particularly in regard to nitrogen oxides, which are responsible for smog and acid rain.

3)     … … …, ranging from the production of petrochemicals to generation of electricity in combined-cycle plants, which combine gas and steam turbine cycles.

4)     … … …; for example, low emissions, high power, high turndown, high efficiencies, and low pulsation levels.

5)     … … …, or may require additional measures (such as steam injection) to operate satisfactorily with a higher hydrogen-content fuel.

6)     … … …, offer exciting opportunities for evaluating the performance of a given design-fuel combination, without the need for expensive tests. 

3.  Look through the second part of the text and be ready to retell it. Name the main words which helped you to understand what this text is about.

4. Do a translation of the second and the third parts of the text.

5.  Write a resume of the article. 

Text 2 Import Ethanol, Not Oil

Do the following tasks:

1. Translate the following extract: 

United States could produce and import roughly 30 billion gallons of ethanol from corn, sugar cane, and grasses and trees, improvements in vehicle fuel economy, burning ethanol can result in no net carbon dioxide emissions into the atmosphere, air and water pollution, large quantities of emissions of greenhouse gases, increasing worldwide petroleum demand will push prices higher over the next few decades, to increase use of ethanol as a fuel, ''flexible-fueled" vehicles that can use a mixture containing anywhere from 0 to 85% ethanol, developing industry producing ethanol as a motor vehicle fuel, Brazilians are thinking seriously about even greater ethanol production from sugar cane and agricultural wastes, making notable progress in producing ethanol from bagasse, the fibrous residual left after all the sugar is extracted from sugar cane

2.  Write out specific terms used in the article and translate them into Kazakh/Russian.

3. Read the first extract of the text and express its main idea. 

Import ethanol, not oil 

To paraphrase Mark Twain, people talk a lot of reducing U.S. dependence on imported oil, but they don't do much about it. Rather than continuing to talk the talk, the United States has a unique window of opportunity to walk the walk. The $2-plus per gallon gasoline prices and our Middle East wars have made the public and Congress acutely aware of the politics of oil and its effects on our national security. With every additional gallon of gasoline and barrel of oil that the nation imports, the situation becomes worse.

Our analysis shows that the United States can have a gasoline substitute at an attractive price with little infrastructure investment and no change to our current fleet of cars and light trucks. By 2016, the United States could produce and import roughly 30 billion gallons of ethanol from corn, sugar cane, and grasses and trees, lowering gasoline use dramatically. Furthermore, the United States could encourage the European Union, Japan, and other rich nations to raise their ethanol production at home and in developing nations by a similar amount. Such increased production, together with improvements in vehicle fuel economy, would result in a notable decrease in petroleum demand, with positive implications for oil prices and Middle Eastern policy. This move would have the added benefit of supporting sustainable Third World development and reducing problems of global warming, because burning ethanol can result in no net carbon dioxide emissions into the atmosphere.

 
Committing to ethanol  

The growing U.S. appetite for petroleum, together with demand growth in China, India, and the rest of the world, has pushed prices to new highs. The United States uses over 20 million barrels of petroleum per day, of which 58% is imported. Prices rose to almost $70 per barrel (bbl) in August 2005. The petroleum futures market is betting that the price will be $67 per bbl in December 2006 and remain well above $60 per bbl through 2012, presumably rising after that. Feeding our oil habit results in oil spills, air and water pollution, large quantities of emissions of greenhouse gases, and increased reliance on politically unstable regions of the world.

Although no one can predict the future with confidence, increasing worldwide petroleum demand will push prices higher over the next few decades. There is little public appetite for high gasoline taxes to decrease consumption or for forcing reater fuel economy on the U.S. light-duty fleet, but there is general recognition that we cannot continue to stick our heads in the sand.

Sensible policy requires that the United States both reduce the amount of energy used per vehicle-mile and substitute some other fuel or fuels for gasoline. The Bush administration plans to accomplish the latter, eventually, with hydrogen-powered vehicles. We are skeptical. The plans envisioned by even optimistic hydrogen proponents would, for decades to come, leave the nation paying ever-higher petroleum prices, continuing to damage the environment, and constraining foreign and defense policies to protect petroleum imports. Putting all our eggs in the hydrogen basket would require large investments and commit us to greater imports, higher prices, and greater dependence on the Persian Gulf until (and if) an attractive technology was developed and widely deployed.

A better alternative is for the nation to increase its use of ethanol as a fuel. In his 2006 State of the Union address, President Bush gave some support to ethanol, although he continued to place heavy emphasis on the promise of hydrogen. The president declared that the government would fund additional research in cutting-edge methods of producing ethanol from corn and cellulosic materials and vowed that his goal was to make ethanol "practical and competitive within six years."

Unfortunately, Congress traditionally has viewed ethanol as a subsidy to corn growers rather than as a serious way to lower oil dependence. The Energy Policy Act of 2005 requires an increasing volume of renewable transportation fuel to be used each year, starting in 2006 and ultimately rising to 7.5 billion gallons of ethanol in 2012. Although this increase would raise the incomes of the corn producers and millers, it would not even keep up with the increases in the nation's gasoline demand and so would not reduce crude oil imports. Gasoline use grows at a little more than 1% per year, about 1.4 billion gallons per year. By 2012, the United States would need to be using 13 billion gallons of ethanol merely to keep gasoline use constant. To reduce oil imports, the nation must achieve major increases in fuel economy and ethanol use.

The path to this goal starts today: The nation should start moving, as rapidly as ethanol supplies become available, to the widespread use of E20: a mixture of 20% ethanol and 80% gasoline. Every car built in the past three decades can use E10 and likely E20 without modification. For 2004, roughly 30 billion gallons of ethanol would have been needed to have the entire fuel stock be E20. Unfortunately, ethanol production and imports are only 13% of that amount today.

If the ethanol were available, the nation could substitute perhaps 80 billion gallons of ethanol for gasoline by 2016 by increasing the 4 million "flexible-fueled" vehicles that can use a mixture containing anywhere from 0 to 85% ethanol. If all new vehicles were flexible-fueled (for a cost of less than $200 per vehicle), the market for ethanol would grow by 8 billion gallons per year.

The primary barrier to producing and importing 30 to 80 billion gallons of ethanol in 2016 is the reluctance of the public and Congress to commit to an ethanol future. Thirty billion gallons of ethanol is more than the nation's corn growers can provide. Cellulosic ethanol is an appealing approach to the problem, one that we have previously written about. Even with all of its potential, development has been painfully slow. The construction of the first commercially operating U.S. plant is 3 to 5 years away. Learning from that plant, designing a second generation and learning from that, and then building a commercial fleet of plants with U.S. technology will take a decade.

 
Looking south  

But there is a promising shortcut that permits immediate access to substantial amounts of ethanol. The United States could address its oil use now, while the cellulosic ethanol industry develops.

We recently traveled to Brazil and saw a developing industry producing ethanol as a motor vehicle fuel. The Brazilians flock to this fuel because it is cheaper than gasoline. Current law requires that the gasoline sold be E25: 25% ethanol blended with 75% gasoline. Brazilians are lining up to buy newly developed flexible-fueled vehicles that can burn fuels ranging from E20 to E100 (actually, the hydrated ethanol contains 95% ethanol and 5% water). With such a flexible vehicle, a driver can buy whatever fuel is cheapest.

Brazil, together with some Caribbean nations, is exporting some 200 million gallons of ethanol to the United States annually. But the United States doesn't make it easy. Brazil pays a 2.5% duty and doesn't receive the 51 cent per gallon excise tax rebate that U.S. producers receive. The Caribbean nations are subject to a quota.

Removing these trade barriers would make imported ethanol more attractive. Such a policy would not penalize U.S. farmer or producers, because total ethanol needs can accommodate all domestic production and imports. Still, the Bush administration remains opposed to eliminating or reducing the duty.

Even so, Brazil is expanding its domestic and export markets for ethanol. Currently Brazil has 370 sugar mills and distilleries, which are forecasted to produce over 4 billion gallons of ethanol this year. An additional 40 mills and distilleries are under construction, with the goal of essentially ending gasoline imports and exporting perhaps 15 billion gallons per year in a decade. According to some estimates, efficient Brazilian producers now make ethanol at a cost of roughly 72 cents per gallon. Our examination of the sugar cane harvesting and mills convinced us that Brazil could lower production costs substantially below that level.

In addition, the Brazilians are thinking seriously about even greater ethanol production from sugar cane and agricultural wastes. One university study is examining how Brazil could replace 10% of the world's gasoline with ethanol (25 to 30 billion gallons) without clearing more rainforests and by doing less harm to the environment than current agriculture. Brazil is also making notable progress in producing ethanol from bagasse, the fibrous residual left after all the sugar is extracted from sugar cane. At least one pilot plant is making bagasse-derived ethanol, and there are plans for a full-scale plant.

The time is right for the United States to adopt policies aimed at expanding ethanol production and use. U.S. corn growers claim that they could possibly produce 15 billion gallons in a decade. Brazil seems ready and able to export another 15 billion gallons at $1 per gallon. At the same time, we should pursue technologies to produce ethanol from biomass at ever-lower costs. Some proponents claim that cellulosic ethanol could ultimately replace all gasoline use in the United States.

The technology for making ethanol from cellulose (grasses and trees) being developed in Brazil, the United States, and Canada, will enable many nations to grow energy crops to produce ethanol. This could be a significant cash crop for developing nations. Growing energy crops around the world has the potential for displacing perhaps half of the world's gasoline demand. The result of cellulsoic ethanol development would be good for U.S. agriculture, by expanding available cash crops; for agricultural soils, by reducing fertilizer and pesticide use and increasing soil fertility; and for the ecology more generally, by providing habitat. The same would be true for farms in many nations, both rich and developing.

The key point is that U.S. actions to expand both domestic corn production and the importation of ethanol from Brazil would serve to develop the necessary infrastructure and incentives to bring cellulsoic ethanol to reality more rapidly. Thus, we see no downside risk to eliminating ethanol tariffs and promoting imports as the United States expands its own ethanol production. This strategy would complement policies to increase vehicle fuel economy. We see no losers with the exception of OPEC-from this policy, and tremendous gain for the United States.

 (By Lester B. Lave and W. Michael Griffin

Source: Issues in Science & Technology, Mar2006, p40.)

 

Do the following tasks: 

1. Look through the text again. What kind of new information did you get about: Ethanol as a new kind of fuel. Find some additional material devoted to this problem and write an article.

2. Read the whole text again. Name the main problems mentioned in it.

3.  Give a written translation of the text into Kazakh/Russian. 

Unit 6

Text 1 Опытно-экспериментальные исследования по деманганации природной воды 

Do the following tasks:

1. Find all terms given in the text, write them down and translate them into English (or give their meanings in English).

2. Read the following text. Translate the underlined extracts into English.

 

Опытно-экспериментальные исследования по деманганации природной воды 

Природные воды содержат в своем составе целый ряд химических элементов и соединений, многие из которых препятствуют использованию воды в хозяйственно-питьевых и промышленных целях. Длительное употребление питьевой воды с излишней концентрацией таких элементов как фтор, железо, марганец приводит к различным заболеваниям человека, повышенное содержание этих элементов в воде отрицательно воздействует на растительный и животный мир.

Марганец является чрезвычайно важным элементом в организме человека и животных, но его повышенное содержание крайне вредно для здоровья. Попадая в организм, марганец реагирует с рядом химических элементов, образуя соединения, которые депрессируют ферменты.

Повышенное содержание марганца в воде придает ей металлический или вяжущий привкус, при контакте с воздухом – окраску. Такая вода причиняет неудобства в быту, присутствие в воде марганца может способствовать развитию в трубах, теплообменных аппаратах, водораспределительных сетях, водоразборной арматуре марганцевых бактерий, продукты жизнедеятельности которых вызывают уменьшение сечения, а иногда их полную закупорку.

Содержание  марганца строго ограничено в воде, используемой в бумажной, текстильной, пищевой, химической и других отраслях промышленности. Именно поэтому ГОСТ 2874-82 "Вода питьевая" регламентирует безвредное содержание марганца в воде 0,1 мг/дм3.

При анализе питьевой воды подземного водозабора г.Уральска лабораторией областного управления "Водоканал" выявлено повышенное содержание марганца от 0,18 до 0,61 мг/дм3, соответственно важной и необходимой задачей является выбор оптимального метода, сооружений, технологической схемы деманганации природной воды.

Анализ содержания марганца в воде производился в соответствии с методикой ГОСТа 4974-72 "Вода питьевая" Технология очистки природной воды в зернистых фильтрах, как правило, неразрывно связана с восстановлением их фильтрующей способности путем промывки (регенерации) от накопившихся загрязнений. Поэтому фильтрованные качества фильтрующих материалов должны сочетаться с их определенными  регенерационными свойствами. Конструкция фильтра, используемая в наших исследованиях, ранее изучена в области очистки природных вод, поэтому при регенерации исследуемого фильтра соблюдали распространенные скорости и режимы их промывки.

Регенерация фильтра осуществлялась по рекомендации НИИ КВОВАКХ им. К.Д.Панфилова водным одноэтапным режимом, следующим образом: промывка водой с интенсивностью 6-7 л/(с-м2). Регенерация продолжалась до тех пор, пока мутность отводимой промывной воды не начинала снижаться, и не начала восстанавливаться ее первоначальная пористость.

Скорости фильтрования и интенсивность промывки загрузки фильтра определялись фиксированным водосливом, установленном на баке.

В экспериментальных исследованиях в г. Алматы деманганацию природных вод проводили фильтрованием через Чанканайский  цеолит и аэрированием сжатым кислородом, поступающим из кислородного баллона.

Исследования проводились на опытно-экспериментальной установке, смонтированной а лаборатории химии и микробиологии воды кафедры "Водоотведение и охрана вод" Казахской Головной Архитектурно-Строительной Академии.

Природная вода из городского водопровода по трубопроводу поступала в бак исходной воды, расположенной на эстакаде высотой 2,4 м.  Из бака исходная вода после открытия крана направлялась в фильтровальную колонку, двигаясь сверху вниз через цеолитовый фильтр, затем поступала в отводящий трубопровод.

Фильтровальная колонка была выполнена из органического стекла диаметром 100 мм и высотой 1,5 м, загружена Чанканайским цеолитом фракции 0,5-3,0 мм. Фракции получены путем просеивания через сита, засыпаны в фильтрационную колонку послойно: в самом низу 0,5-2,0; 2,0-2,5; 2,5-3,0 по 0,2 м каждый слой.

Высота загрузки составила 100 см. Для поддержания загрузки в нижней части фильтрационной колонки фильтра был установлен поддерживающий слой высотой 0,2 м из щебня и гравия.

Для определения потерь напора по слоям фильтрующей загрузки фильтр был оборудован штуцерами, концы которых, с одной стороны, на 2 см входили вовнутрь фильтра и были намотаны проволочной сеткой из латуни, а с другой стороны, оборудованы кранами для отбора проб воды на анализы.

Потери напора в фильтрах измерялись пьезометрами.

Промывка фильтра осуществлялась исходной водой, подаваемой из городской водоотводящей системы.

Для аэрирования исследуемой воды к фильтрационной колонке был присоединен кислородный баллон с редуктором, фиксирующим значения давления сжатого кислорода в баллоне и шланге-воздуховоде. Постоянное значение давления в баллоне и в шланге равнялось соответственно 8-9 атмосфер и 0,1-0,2 атмосфер.

Длина шланга-воздуховода равнялась 2,0 м; на шланге имелся зажим для предотвращения попадания воды из фильтрационной колонки при отключении подачи кислорода. Вода городского водопровода г. Алматы содержит марганец в пределах допустимого значения, поэтому были изготовлены искусственные растворы с содержанием марганца 0,2 мг/дм3, 0,3 мг/дм3, 0,5 мг/дм3, 0,6 мг/дм3, 0,7 мг/дм3, 1,0 мг/дм3.

Все 6 серий опытов проведены в режиме одноступенчатого однопоточного фильтрования с подачей воды сверху вниз.

 

(А.Е.Идрисова)

Do the following tasks: 

1. Complete the following sentences from the text. Translate them into English.

1)     … … …, но его повышенное содержание крайне вредно для здоровья;

2)     … … …, образуя соединения, которые депрессируют ферменты;

3)     … … …, поэтому при регенерации исследуемого фильтра соблюдали распространенные скорости и режимы их промывки;

4)     … … …, и не начала восстанавливаться ее первоначальная пористость.

5)     … … …, подаваемой из городской водоотводящей системы.

2. Make up a detailed plan of each part of the text: a) divide the text into logical parts; b) give each part a suitable heading. Retell each part of the text separately. Use your translation and retell the text in English.

3. Give a written translation of the text in English.

 

 

Список литературы

 

1. www.epnet.com

2. Материалы научно-практической конференции “Проблемы развития энергетики и телекоммуникации в свете стратегии индустриально-инновационного развития Казахстана”, Алматы, 2005

 

 

Содержание  

Unit 1........................................................................................................... 5

Unit 2......................................................................................................... 13

Unit 3......................................................................................................... 14

Unit 4......................................................................................................... 14

Unit 5......................................................................................................... 14

Unit 6......................................................................................................... 14

 

 

 

Сводный план 2007г., поз. 42

  

Аида Кенесбековна Садыкова

  

АНГЛИЙСКИЙ ЯЗЫК.

ТЕХНИЧЕСКИЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

Методические указания

для магистрантов специальности 050717 - Теплоэнергетика

 

  

Редактор Т.С. Курманбаева

Специалист по стандартизации Н.М. Голева

  

Подписано в печать___________

Тираж 50 экз.

Объем 3,5 уч. –изд. л.

Формат 60х84 1/16

Бумага типографская № 1

Заказ______. Цена_______.

   

Копировально-множительное бюро

Некоммерческого акционерного общества

«Алматинский институт энергетики и связи»

050013, Алматы, Байтурсынова, 126.